Conics in Baer subplanes

S. G. Barwick, Wen-Ai Jackson, P. Wild
{"title":"Conics in Baer subplanes","authors":"S. G. Barwick, Wen-Ai Jackson, P. Wild","doi":"10.2140/IIG.2019.17.85","DOIUrl":null,"url":null,"abstract":"This article studies conics and subconics of $PG(2,q^2)$ and their representation in the Andr\\'e/Bruck-Bose setting in $PG(4,q)$. In particular, we investigate their relationship with the transversal lines of the regular spread. The main result is to show that a conic in a tangent Baer subplane of $PG(2,q^2)$ corresponds in $PG(4,q)$ to a normal rational curve that meets the transversal lines of the regular spread. Conversely, every 3 and 4-dimensional normal rational curve in $PG(4,q)$ that meets the transversal lines of the regular spread corresponds to a conic in a tangent Baer subplane of $PG(2,q^2)$.","PeriodicalId":127937,"journal":{"name":"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial","volume":"83 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/IIG.2019.17.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This article studies conics and subconics of $PG(2,q^2)$ and their representation in the Andr\'e/Bruck-Bose setting in $PG(4,q)$. In particular, we investigate their relationship with the transversal lines of the regular spread. The main result is to show that a conic in a tangent Baer subplane of $PG(2,q^2)$ corresponds in $PG(4,q)$ to a normal rational curve that meets the transversal lines of the regular spread. Conversely, every 3 and 4-dimensional normal rational curve in $PG(4,q)$ that meets the transversal lines of the regular spread corresponds to a conic in a tangent Baer subplane of $PG(2,q^2)$.
贝尔子平面中的圆锥曲线
本文研究了$PG(2,q^2)$的二次曲线和次二次曲线及其在$PG(4,q)$的Andr\ e/Bruck-Bose集合中的表示。特别地,我们研究了它们与正则扩展截线的关系。主要结果是证明了$PG(2,q^2)$的正切Baer子平面上的二次曲线对应于$PG(4,q)$中满足规则扩展的截线的正态有理曲线。反过来说,$PG(4,q)$中的每一个3维和4维法向有理曲线满足规则扩展的截线,对应于$PG(2,q^2)$的正切Baer子平面中的一个二次曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信