Syllable-Dependent Discriminative Learning for Small Footprint Text-Dependent Speaker Verification

Junyi Peng, Yuexian Zou, N. Li, Deyi Tuo, Dan Su, Meng Yu, Chunlei Zhang, Dong Yu
{"title":"Syllable-Dependent Discriminative Learning for Small Footprint Text-Dependent Speaker Verification","authors":"Junyi Peng, Yuexian Zou, N. Li, Deyi Tuo, Dan Su, Meng Yu, Chunlei Zhang, Dong Yu","doi":"10.1109/ASRU46091.2019.9004023","DOIUrl":null,"url":null,"abstract":"This study proposes a novel scheme of syllable-dependent discriminative speaker embedding learning for small footprint text-dependent speaker verification systems. To suppress undesired syllable variation and enhance the power of discrimination inherited in the frame-level features, we design a novel syllable-dependent clustering loss to optimize the network. Specifically, this loss function utilizes syllable labels as auxiliary supervision information to explicitly maximize inter-syllable divisibility and intra-syllable compactness between the learned frame-level features. Successively, we propose two syllable-dependent pooling mechanisms to aggregate the frame-level features to several syllable-level features by averaging those features corresponding to each syllable. The utterance-level speaker embeddings with powerful discrimination are then obtained by concatenating the syllable-level features. Experimental results on Tencent voice wake-up dataset show that our proposed scheme can accelerate the network convergence and achieve significant performance improvement against the state-of-the-art methods.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9004023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study proposes a novel scheme of syllable-dependent discriminative speaker embedding learning for small footprint text-dependent speaker verification systems. To suppress undesired syllable variation and enhance the power of discrimination inherited in the frame-level features, we design a novel syllable-dependent clustering loss to optimize the network. Specifically, this loss function utilizes syllable labels as auxiliary supervision information to explicitly maximize inter-syllable divisibility and intra-syllable compactness between the learned frame-level features. Successively, we propose two syllable-dependent pooling mechanisms to aggregate the frame-level features to several syllable-level features by averaging those features corresponding to each syllable. The utterance-level speaker embeddings with powerful discrimination are then obtained by concatenating the syllable-level features. Experimental results on Tencent voice wake-up dataset show that our proposed scheme can accelerate the network convergence and achieve significant performance improvement against the state-of-the-art methods.
小足迹文本依赖说话人验证的音节依赖判别学习
本研究提出了一种新的基于音节的判别式说话人嵌入学习方案,用于小足迹文本依赖说话人验证系统。为了抑制不期望的音节变化,增强帧级特征继承的识别能力,我们设计了一种新的音节相关聚类损失来优化网络。具体来说,该损失函数利用音节标签作为辅助监督信息,明确地最大化学习到的帧级特征之间的音节间可分性和音节内紧凑性。随后,我们提出了两种音节相关的池化机制,通过对每个音节对应的特征进行平均,将框架级特征聚合为多个音节级特征。然后通过串接音节级特征,得到具有强辨别能力的话语级说话人嵌入。在腾讯语音唤醒数据集上的实验结果表明,我们提出的方案可以加速网络的收敛速度,并且相对于现有的方法有显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信