Scalable and Reconfigurable Architecture of Modified KD-Tree ML-Classifier with 5-Point Searching

Xin-Yu Shih, Chen-Yen Song
{"title":"Scalable and Reconfigurable Architecture of Modified KD-Tree ML-Classifier with 5-Point Searching","authors":"Xin-Yu Shih, Chen-Yen Song","doi":"10.1109/ICCE-Taiwan55306.2022.9869284","DOIUrl":null,"url":null,"abstract":"This paper proposes a reconfigurable hardware architecture of modified KD-tree machine-learning classifier. As compared to current literature, this hardware is the first KD-tree-like hardware implementation. As compared with original KD-tree algorithm, our design can deliver a very low latency in hardware because we do not need the data traversal steps along the binary tree. Meanwhile, this scalable hardware can be easily constructed if supporting a greater number of data instances to be classified. In the hardware implementation with TSMC 40-nm CMOS technology, our synthesizable hardware achieves a maximum frequency of 401.6 MHz, only occupying an area of 0.562 mm2.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a reconfigurable hardware architecture of modified KD-tree machine-learning classifier. As compared to current literature, this hardware is the first KD-tree-like hardware implementation. As compared with original KD-tree algorithm, our design can deliver a very low latency in hardware because we do not need the data traversal steps along the binary tree. Meanwhile, this scalable hardware can be easily constructed if supporting a greater number of data instances to be classified. In the hardware implementation with TSMC 40-nm CMOS technology, our synthesizable hardware achieves a maximum frequency of 401.6 MHz, only occupying an area of 0.562 mm2.
基于5点搜索的改进KD-Tree ml分类器的可扩展可重构结构
提出了一种改进kd树机器学习分类器的可重构硬件结构。与目前的文献相比,这个硬件是第一个类似于kd树的硬件实现。与原来的KD-tree算法相比,我们的设计可以提供非常低的硬件延迟,因为我们不需要沿着二叉树进行数据遍历步骤。同时,如果支持更多要分类的数据实例,则可以轻松构建这种可伸缩的硬件。在采用台积电40纳米CMOS技术的硬件实现中,我们的可合成硬件实现了401.6 MHz的最高频率,仅占用0.562 mm2的面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信