Improving Steganalysis by Fusing SVM Classifiers for JPEG Images

Peiqing Liu, Fenlin Liu, Chunfang Yang, Xiaofeng Song
{"title":"Improving Steganalysis by Fusing SVM Classifiers for JPEG Images","authors":"Peiqing Liu, Fenlin Liu, Chunfang Yang, Xiaofeng Song","doi":"10.1109/CSMA.2015.44","DOIUrl":null,"url":null,"abstract":"As the present fusing strategies cannot utilize the correlation of different detection results for image steganography effectively, a steganalysis method is proposed based on fusing SVM classifiers. Firstly, different feature subsets are used for the training of SVM classifiers. Secondly, the detection results of multi-classifiers are utilized to train a fusing classifier, the fusing classifier can learn the correlation and diversity of detection results of sub-classifiers. From the experimental result, it can be seen that the proposed steganalysis method can achieve better detection performance for J-UNIWARD steganography compared with voting and Bayesian methods.","PeriodicalId":205396,"journal":{"name":"2015 International Conference on Computer Science and Mechanical Automation (CSMA)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Computer Science and Mechanical Automation (CSMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSMA.2015.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

As the present fusing strategies cannot utilize the correlation of different detection results for image steganography effectively, a steganalysis method is proposed based on fusing SVM classifiers. Firstly, different feature subsets are used for the training of SVM classifiers. Secondly, the detection results of multi-classifiers are utilized to train a fusing classifier, the fusing classifier can learn the correlation and diversity of detection results of sub-classifiers. From the experimental result, it can be seen that the proposed steganalysis method can achieve better detection performance for J-UNIWARD steganography compared with voting and Bayesian methods.
利用融合SVM分类器改进JPEG图像隐写分析
针对目前的融合策略不能有效利用不同检测结果之间的相关性进行图像隐写的问题,提出了一种基于融合SVM分类器的隐写分析方法。首先,使用不同的特征子集对SVM分类器进行训练。其次,利用多分类器检测结果训练融合分类器,融合分类器可以学习子分类器检测结果的相关性和多样性;从实验结果可以看出,与投票和贝叶斯方法相比,所提出的隐写分析方法可以获得更好的J-UNIWARD隐写检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信