Problem of Determining a Multidimensional Kernel in One Parabolic Integro–differential Equation

D. Durdiev, Zhavlon Zafarovich Nuriddinov
{"title":"Problem of Determining a Multidimensional Kernel in One Parabolic Integro–differential Equation","authors":"D. Durdiev, Zhavlon Zafarovich Nuriddinov","doi":"10.17516/1997-1397-2020-14-1-117-127","DOIUrl":null,"url":null,"abstract":"The multidimensional parabolic integro-differential equation with the time-convolution in- tegral on the right side is considered. The direct problem is represented by the Cauchy problem for this equation. In this paper it is studied the inverse problem consisting in finding of a time and spatial dependent kernel of the integrated member on known in a hyperplane xn = 0 for t > 0 to the solution of direct problem. With use of the resolvent of kernel this problem is reduced to the investigation of more convenient inverse problem. The last problem is replaced with the equivalent system of the integral equations with respect to unknown functions and on the bases of contractive mapping principle it is proved the unique solvability to the direct and inverse problems","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-14-1-117-127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The multidimensional parabolic integro-differential equation with the time-convolution in- tegral on the right side is considered. The direct problem is represented by the Cauchy problem for this equation. In this paper it is studied the inverse problem consisting in finding of a time and spatial dependent kernel of the integrated member on known in a hyperplane xn = 0 for t > 0 to the solution of direct problem. With use of the resolvent of kernel this problem is reduced to the investigation of more convenient inverse problem. The last problem is replaced with the equivalent system of the integral equations with respect to unknown functions and on the bases of contractive mapping principle it is proved the unique solvability to the direct and inverse problems
一类抛物型积分-微分方程多维核的确定问题
研究了右边为时间卷积的多维抛物型积分微分方程。直接问题用这个方程的柯西问题来表示。本文研究了在超平面xn = 0上,当t > 0时,求已知积分元的时空相关核的反问题求解正问题。利用核解将该问题简化为更方便的反问题的研究。将最后一个问题替换为关于未知函数的积分方程的等价方程组,并根据压缩映射原理证明了正问题和逆问题的唯一可解性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信