Sum capacity of the Gaussian interference channel in the low interference regime

V. Annapureddy, V. Veeravalli
{"title":"Sum capacity of the Gaussian interference channel in the low interference regime","authors":"V. Annapureddy, V. Veeravalli","doi":"10.1109/ITA.2008.4601084","DOIUrl":null,"url":null,"abstract":"New upper bounds on the sum capacity of the two-user Gaussian interference channel are derived. Using these bounds, it is shown that treating interference as noise achieves the sum capacity if the interference levels are below certain thresholds.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

New upper bounds on the sum capacity of the two-user Gaussian interference channel are derived. Using these bounds, it is shown that treating interference as noise achieves the sum capacity if the interference levels are below certain thresholds.
高斯干涉信道在低干扰状态下的和容量
导出了双用户高斯干涉信道容量和的新上界。利用这些界限,表明如果干扰水平低于某些阈值,则将干扰视为噪声可获得和容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信