Employing discrete Bayes error rate for discretization and feature selection tasks

A. Mittal, L. Cheong
{"title":"Employing discrete Bayes error rate for discretization and feature selection tasks","authors":"A. Mittal, L. Cheong","doi":"10.1109/ICDM.2002.1183916","DOIUrl":null,"url":null,"abstract":"The tasks of discretization and feature selection are frequently used to improve classification accuracy. We use discrete approximation of Bayes error rate to perform discretization on the features. The discretization procedure targets minimization of Bayes error rate within each partition. A class-pair discriminatory measure can be defined on discretized partitions which forms the basis of the feature selection algorithm. A small value of this measure for a class-pair indicates that the class-pair in consideration is confusing and the features which distinguish them well should be chosen first. A video classification problem on a large database is considered for showing the comparison of a classifier using our discretization and feature selection tasks with SVM, neural network classifier, decision trees and K-nearest neighbor classifier.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1183916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The tasks of discretization and feature selection are frequently used to improve classification accuracy. We use discrete approximation of Bayes error rate to perform discretization on the features. The discretization procedure targets minimization of Bayes error rate within each partition. A class-pair discriminatory measure can be defined on discretized partitions which forms the basis of the feature selection algorithm. A small value of this measure for a class-pair indicates that the class-pair in consideration is confusing and the features which distinguish them well should be chosen first. A video classification problem on a large database is considered for showing the comparison of a classifier using our discretization and feature selection tasks with SVM, neural network classifier, decision trees and K-nearest neighbor classifier.
采用离散贝叶斯误差率进行离散化和特征选择任务
离散化和特征选择任务经常用于提高分类精度。我们使用贝叶斯错误率的离散逼近对特征进行离散化。离散化过程的目标是使每个分区内的贝叶斯误差率最小。在离散分区上定义类对判别测度,这是特征选择算法的基础。类对的这个度量值越小,表明所考虑的类对是混淆的,应该首先选择能很好地区分它们的特征。考虑一个大型数据库上的视频分类问题,以显示使用我们的离散化和特征选择任务的分类器与支持向量机,神经网络分类器,决策树和k近邻分类器的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信