A Method of Environmental Sound Classification Based on Residual Networks and Data Augmentation

Jinfang Zeng, Y. Li, Yu Zhang, Da Chen
{"title":"A Method of Environmental Sound Classification Based on Residual Networks and Data Augmentation","authors":"Jinfang Zeng, Y. Li, Yu Zhang, Da Chen","doi":"10.1142/s1469026821500188","DOIUrl":null,"url":null,"abstract":"Environmental sound classification (ESC) is a challenging problem due to the complexity of sounds. To date, a variety of signal processing and machine learning techniques have been applied to ESC task, including matrix factorization, dictionary learning, wavelet filterbanks and deep neural networks. It is observed that features extracted from deeper networks tend to achieve higher performance than those extracted from shallow networks. However, in ESC task, only the deep convolutional neural networks (CNNs) which contain several layers are used and the residual networks are ignored, which lead to degradation in the performance. Meanwhile, a possible explanation for the limited exploration of CNNs and the difficulty to improve on simpler models is the relative scarcity of labeled data for ESC. In this paper, a residual network called EnvResNet for the ESC task is proposed. In addition, we propose to use audio data augmentation to overcome the problem of data scarcity. The experiments will be performed on the ESC-50 database. Combined with data augmentation, the proposed model outperforms baseline implementations relying on mel-frequency cepstral coefficients and achieves results comparable to other state-of-the-art approaches in terms of classification accuracy.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026821500188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental sound classification (ESC) is a challenging problem due to the complexity of sounds. To date, a variety of signal processing and machine learning techniques have been applied to ESC task, including matrix factorization, dictionary learning, wavelet filterbanks and deep neural networks. It is observed that features extracted from deeper networks tend to achieve higher performance than those extracted from shallow networks. However, in ESC task, only the deep convolutional neural networks (CNNs) which contain several layers are used and the residual networks are ignored, which lead to degradation in the performance. Meanwhile, a possible explanation for the limited exploration of CNNs and the difficulty to improve on simpler models is the relative scarcity of labeled data for ESC. In this paper, a residual network called EnvResNet for the ESC task is proposed. In addition, we propose to use audio data augmentation to overcome the problem of data scarcity. The experiments will be performed on the ESC-50 database. Combined with data augmentation, the proposed model outperforms baseline implementations relying on mel-frequency cepstral coefficients and achieves results comparable to other state-of-the-art approaches in terms of classification accuracy.
基于残差网络和数据增强的环境声分类方法
由于声音的复杂性,环境声音分类(ESC)是一个具有挑战性的问题。迄今为止,各种信号处理和机器学习技术已经应用于ESC任务,包括矩阵分解、字典学习、小波滤波器组和深度神经网络。观察到,从深层网络中提取的特征往往比从浅层网络中提取的特征获得更高的性能。然而,在ESC任务中,只使用包含多个层的深度卷积神经网络(cnn),忽略了残差网络,导致性能下降。同时,对cnn的有限探索和对简单模型的难以改进的一个可能解释是ESC的标记数据相对稀缺。本文提出了一种用于ESC任务的残余网络EnvResNet。此外,我们建议使用音频数据增强来克服数据稀缺的问题。实验将在ESC-50数据库上进行。结合数据增强,所提出的模型优于依赖mel频率倒谱系数的基线实现,并在分类精度方面达到与其他最先进方法相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信