Malware Signatures Detection with Neural Networks

Matej Adamec, M. Turčaník
{"title":"Malware Signatures Detection with Neural Networks","authors":"Matej Adamec, M. Turčaník","doi":"10.23919/NTSP54843.2022.9920380","DOIUrl":null,"url":null,"abstract":"Malware detection and prevention is a cornerstone of computer security. Without proper computer security our data would be vulnerable and at risk of leak. Each malicious program performs a certain activity that we are able to describe in machine code. By converting machine code to visual form, may be a way to detect hidden malicious structures which would not be detectable in plain text machine code form. A Convolutional Neural Network (CNN) takes an image as input and returns the class to which it belongs. Classifying generated visualized machine code with CNN into the respective groups is a main task. At first, we will create generators of source machine code. Later on, we will define what is signature and how it differs from a normal source code. Last but not least we will modify signatures by adding redundant idle machine code instructions. Our overall task will be to classify code by its signature.","PeriodicalId":103310,"journal":{"name":"2022 New Trends in Signal Processing (NTSP)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 New Trends in Signal Processing (NTSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/NTSP54843.2022.9920380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Malware detection and prevention is a cornerstone of computer security. Without proper computer security our data would be vulnerable and at risk of leak. Each malicious program performs a certain activity that we are able to describe in machine code. By converting machine code to visual form, may be a way to detect hidden malicious structures which would not be detectable in plain text machine code form. A Convolutional Neural Network (CNN) takes an image as input and returns the class to which it belongs. Classifying generated visualized machine code with CNN into the respective groups is a main task. At first, we will create generators of source machine code. Later on, we will define what is signature and how it differs from a normal source code. Last but not least we will modify signatures by adding redundant idle machine code instructions. Our overall task will be to classify code by its signature.
基于神经网络的恶意软件签名检测
恶意软件的检测和预防是计算机安全的基石。如果没有适当的电脑安全措施,我们的资料将易受攻击,并有泄露的危险。每个恶意程序都执行我们能够用机器代码描述的特定活动。通过将机器码转换为可视形式,可能是一种检测隐藏的恶意结构的方法,这些结构在纯文本机器码形式中无法检测到。卷积神经网络(CNN)将图像作为输入,并返回图像所属的类。用CNN对生成的可视化机器码进行分类是一个主要任务。首先,我们将创建源机器码的生成器。稍后,我们将定义什么是签名以及它与普通源代码的区别。最后但并非最不重要的是,我们将通过添加冗余空闲机器码指令来修改签名。我们的总体任务是根据其签名对代码进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信