Kajathees Premendran, S.B.D.D. Bopearachchi, Str Senevirathna, Sithpavan Giridaran, K. Archchana, D. Ganegoda, S. Thelijjagoda
{"title":"Assistant Zone – Homeschooling Assistance System based on Natural Language Processing","authors":"Kajathees Premendran, S.B.D.D. Bopearachchi, Str Senevirathna, Sithpavan Giridaran, K. Archchana, D. Ganegoda, S. Thelijjagoda","doi":"10.1109/ICAC57685.2022.10025201","DOIUrl":null,"url":null,"abstract":"As a developing country, most people give their highest priority to education. When focusing on building an e-learning platform to improve the knowledge of students and teacher-student interactivity, the pandemic season can be mentioned as the main blocker which highly impacted the education field. Not only by considering the pandemic situation but also by addressing the concerns when it comes to teacher and student evaluation and psychological levels of students who are undergoing different difficulties, the “Home Schooling Assistance System” (Assistant Zone) has been introduced as a solution. The Assistant Zone has been initiated with three unique features which are valuable for both students and teachers. This system analyzes the strengths, weaknesses and evaluates the student performance, suggests study materials to improve themselves, provides solutions to the problems faced by the students, teachers, and parents and measures the performance of teachers based on their students, and recommends learning materials for the low-performing teachers. The Assistant Zone fulfills the targeted problems and introduces the above-mentioned three unique features with the use of Natural Language Processing (NLP) such as the BERT algorithm and Machine Learning models such as the Recurrent Neural Network, Forward Neural Network, and Gaussian Model.","PeriodicalId":292397,"journal":{"name":"2022 4th International Conference on Advancements in Computing (ICAC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Advancements in Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC57685.2022.10025201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As a developing country, most people give their highest priority to education. When focusing on building an e-learning platform to improve the knowledge of students and teacher-student interactivity, the pandemic season can be mentioned as the main blocker which highly impacted the education field. Not only by considering the pandemic situation but also by addressing the concerns when it comes to teacher and student evaluation and psychological levels of students who are undergoing different difficulties, the “Home Schooling Assistance System” (Assistant Zone) has been introduced as a solution. The Assistant Zone has been initiated with three unique features which are valuable for both students and teachers. This system analyzes the strengths, weaknesses and evaluates the student performance, suggests study materials to improve themselves, provides solutions to the problems faced by the students, teachers, and parents and measures the performance of teachers based on their students, and recommends learning materials for the low-performing teachers. The Assistant Zone fulfills the targeted problems and introduces the above-mentioned three unique features with the use of Natural Language Processing (NLP) such as the BERT algorithm and Machine Learning models such as the Recurrent Neural Network, Forward Neural Network, and Gaussian Model.