Privacy-preserving SVM classification on arbitrarily partitioned data

Yunhong Hu, G. He, Liang Fang, Jingyong Tang
{"title":"Privacy-preserving SVM classification on arbitrarily partitioned data","authors":"Yunhong Hu, G. He, Liang Fang, Jingyong Tang","doi":"10.1109/PIC.2010.5687397","DOIUrl":null,"url":null,"abstract":"With the development of information science and modern technology, it becomes more important about how to protect privacy information. In this paper, a novel privacy-preserving support vector machine (SVM) classifier is put forward for arbitrarily partitioned data. The proposed SVM classifier, which is public but does not reveal the privately-held data, has accuracy comparable to that of an ordinary SVM classifier based on the original data. We prove the feasibility of our algorithms by using matrix factorization theory and show the security.","PeriodicalId":142910,"journal":{"name":"2010 IEEE International Conference on Progress in Informatics and Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2010.5687397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

With the development of information science and modern technology, it becomes more important about how to protect privacy information. In this paper, a novel privacy-preserving support vector machine (SVM) classifier is put forward for arbitrarily partitioned data. The proposed SVM classifier, which is public but does not reveal the privately-held data, has accuracy comparable to that of an ordinary SVM classifier based on the original data. We prove the feasibility of our algorithms by using matrix factorization theory and show the security.
基于任意分区数据的支持向量机隐私保护分类
随着信息科学和现代技术的发展,如何保护隐私信息变得越来越重要。针对任意分割的数据,提出了一种新的保护隐私的支持向量机分类器。所提出的SVM分类器是公开的,但不显示私有数据,其精度可与基于原始数据的普通SVM分类器相媲美。利用矩阵分解理论证明了算法的可行性,并证明了算法的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信