Automatic Image Annotation based-on Rough Set Theory with Visual Keys

Manabu Serata, Yutaka Hatakeyama, Kaoru Hirota
{"title":"Automatic Image Annotation based-on Rough Set Theory with Visual Keys","authors":"Manabu Serata, Yutaka Hatakeyama, Kaoru Hirota","doi":"10.1109/ISPACS.2006.364713","DOIUrl":null,"url":null,"abstract":"For automatic image annotation, a method based on rough sets with visual keys is proposed. Using rough set theory the method constructs decision rules about each visual key used for image indexing and about keywords from training set of already annotated images. Then target image is annotated according to constructed decision rules about visual keys which the target image is indexed by. The method is evaluated with training sets of 900 images and with test sets of 100 images on 1,000 manually annotated images in COREL database. Experiments show that recall rates tend to rise easily compared with precision rates on image retrieval with query-by-keywords","PeriodicalId":178644,"journal":{"name":"2006 International Symposium on Intelligent Signal Processing and Communications","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Intelligent Signal Processing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2006.364713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For automatic image annotation, a method based on rough sets with visual keys is proposed. Using rough set theory the method constructs decision rules about each visual key used for image indexing and about keywords from training set of already annotated images. Then target image is annotated according to constructed decision rules about visual keys which the target image is indexed by. The method is evaluated with training sets of 900 images and with test sets of 100 images on 1,000 manually annotated images in COREL database. Experiments show that recall rates tend to rise easily compared with precision rates on image retrieval with query-by-keywords
基于粗糙集理论的视觉键图像自动标注
针对图像自动标注问题,提出了一种基于粗糙集视觉键的图像自动标注方法。该方法利用粗糙集理论构建了用于图像索引的每个视觉关键字的决策规则,以及来自已标注图像的训练集的关键字的决策规则。然后根据构建的视觉键决策规则对目标图像进行标注。该方法在COREL数据库中使用900个图像的训练集和100个图像的测试集对1,000个手动注释的图像进行了评估。实验表明,与基于关键词的图像检索相比,基于关键词的图像检索的查全率更容易提高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信