Improving Lane Annotation in Autonomous Driving Data Sets with Classical Computer Vision Techniques

Dimitrije Stojanović, N. Cetic, Jelena Kocic, Bogdan Pavković
{"title":"Improving Lane Annotation in Autonomous Driving Data Sets with Classical Computer Vision Techniques","authors":"Dimitrije Stojanović, N. Cetic, Jelena Kocic, Bogdan Pavković","doi":"10.1109/ZINC58345.2023.10174073","DOIUrl":null,"url":null,"abstract":"Autonomous driving systems rely on accurate and reliable lane detection to safely navigate roads. In this paper, we propose a method for improving lane annotation in autonomous driving data sets using classical computer vision techniques. The proposed method combines the Hough transform and linear curve fitting to detect and smooth the positions of lane markings in a video stream. We evaluate the performance of the proposed method on the Berkeley DeepDrive (BDD) dataset and compare it to the ground truth annotations. Results show that the proposed method achieves a high level of accuracy and robustness in lane detection, and can effectively improve lane annotation in autonomous driving data sets. Our method provides a valuable tool for training and evaluating autonomous driving systems, and can also be applied to improve annotation in different datasets.","PeriodicalId":383771,"journal":{"name":"2023 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC58345.2023.10174073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous driving systems rely on accurate and reliable lane detection to safely navigate roads. In this paper, we propose a method for improving lane annotation in autonomous driving data sets using classical computer vision techniques. The proposed method combines the Hough transform and linear curve fitting to detect and smooth the positions of lane markings in a video stream. We evaluate the performance of the proposed method on the Berkeley DeepDrive (BDD) dataset and compare it to the ground truth annotations. Results show that the proposed method achieves a high level of accuracy and robustness in lane detection, and can effectively improve lane annotation in autonomous driving data sets. Our method provides a valuable tool for training and evaluating autonomous driving systems, and can also be applied to improve annotation in different datasets.
利用经典计算机视觉技术改进自动驾驶数据集的车道标注
自动驾驶系统依靠准确可靠的车道检测来安全行驶。本文提出了一种利用经典计算机视觉技术改进自动驾驶数据集车道标注的方法。该方法结合Hough变换和线性曲线拟合来检测视频流中车道标记的位置并进行平滑处理。我们在Berkeley DeepDrive (BDD)数据集上评估了所提出方法的性能,并将其与地面真值注释进行了比较。结果表明,该方法在车道检测方面具有较高的准确性和鲁棒性,能够有效改善自动驾驶数据集的车道标注。我们的方法为训练和评估自动驾驶系统提供了一个有价值的工具,也可以应用于改进不同数据集的注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信