A fast technique for automatic segmentation and classification of textured images

Y. Boutalis, S. Kollias, G. Carayannis, Levon Sukissian
{"title":"A fast technique for automatic segmentation and classification of textured images","authors":"Y. Boutalis, S. Kollias, G. Carayannis, Levon Sukissian","doi":"10.1109/ICASSP.1988.196796","DOIUrl":null,"url":null,"abstract":"A fast computationally efficient method for automatic segmentation and classification of textured images is presented. The method does not necessarily need a-priori information about the textures present in the image, thus avoiding the necessity of a training set of textures. A fast adaptive multichannel technique for autoregressive image model parameter estimation with fast tracking capabilities and a powerful statistical distance measure are appropriately interweaved to form the proposed technique. Specific properties of the estimation part of the algorithm are exploited to reduce greatly the computational complexity of the distance measure. Some interesting extensions of the method are discussed and examples are given which illustrate the performance of the algorithm.<<ETX>>","PeriodicalId":448544,"journal":{"name":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1988.196796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A fast computationally efficient method for automatic segmentation and classification of textured images is presented. The method does not necessarily need a-priori information about the textures present in the image, thus avoiding the necessity of a training set of textures. A fast adaptive multichannel technique for autoregressive image model parameter estimation with fast tracking capabilities and a powerful statistical distance measure are appropriately interweaved to form the proposed technique. Specific properties of the estimation part of the algorithm are exploited to reduce greatly the computational complexity of the distance measure. Some interesting extensions of the method are discussed and examples are given which illustrate the performance of the algorithm.<>
纹理图像的快速自动分割和分类技术
提出了一种快速高效的纹理图像自动分割与分类方法。该方法不一定需要图像中存在的纹理的先验信息,从而避免了纹理训练集的必要性。将一种快速自适应多通道自回归图像模型参数估计技术与快速跟踪能力和强大的统计距离度量适当地交织在一起,形成了该技术。利用该算法估计部分的特性,大大降低了距离测量的计算复杂度。讨论了该方法的一些有趣的扩展,并给出了说明算法性能的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信