{"title":"Graph Entropy Associated with Multilevel Atomic Excitation†","authors":"A. Alhasan","doi":"10.3390/ecea-5-06675","DOIUrl":null,"url":null,"abstract":"A graph-model is presented to describe multilevel atomic structure. As an example, we take the double Λ configuration in alkali-metal atoms with hyperfine structure and nuclear spin I = 3 / 2 , as a graph with four vertices. Links are treated as coherence. We introduce the transition matrix which describes the connectivity matrix in static graph-model. In general, the transition matrix describes spatiotemporal behavior of the dynamic graph-model. Furthermore, it describes multiple connections and self-looping of vertices. The atomic excitation is made by short pulses, in order that the hyperfine structure is well resolved. Entropy associated with the proposed dynamic graph-model is used to identify transitions as well as local stabilization in the system without invoking the energy concept of the propagated pulses.","PeriodicalId":127397,"journal":{"name":"Entropy: Theory and New Insights","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy: Theory and New Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecea-5-06675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A graph-model is presented to describe multilevel atomic structure. As an example, we take the double Λ configuration in alkali-metal atoms with hyperfine structure and nuclear spin I = 3 / 2 , as a graph with four vertices. Links are treated as coherence. We introduce the transition matrix which describes the connectivity matrix in static graph-model. In general, the transition matrix describes spatiotemporal behavior of the dynamic graph-model. Furthermore, it describes multiple connections and self-looping of vertices. The atomic excitation is made by short pulses, in order that the hyperfine structure is well resolved. Entropy associated with the proposed dynamic graph-model is used to identify transitions as well as local stabilization in the system without invoking the energy concept of the propagated pulses.