Singular Weyl’s law with Ricci curvature bounded below

Xianche Dai, Shouhei Honda, Jiayin Pan, G. Wei
{"title":"Singular Weyl’s law with Ricci curvature bounded below","authors":"Xianche Dai, Shouhei Honda, Jiayin Pan, G. Wei","doi":"10.1090/btran/160","DOIUrl":null,"url":null,"abstract":"We establish two surprising types of Weyl’s laws for some compact \n\n \n \n RCD\n ⁡\n (\n K\n ,\n N\n )\n \n \\operatorname {RCD}(K, N)\n \n\n/Ricci limit spaces. The first type could have power growth of any order (bigger than one). The other one has an order corrected by logarithm similar to some fractals even though the space is 2-dimensional. Moreover the limits in both types can be written in terms of the singular sets of null capacities, instead of the regular sets. These are the first examples with such features for \n\n \n \n RCD\n ⁡\n (\n K\n ,\n N\n )\n \n \\operatorname {RCD}(K,N)\n \n\n spaces. Our results depend crucially on analyzing and developing important properties of the examples constructed in Pan and Wei [Geom. Funct. Anal. 32 (2022), pp. 676–685], showing them isometric to the \n\n \n α\n \\alpha\n \n\n-Grushin halfplanes. Of independent interest, this also allows us to provide counterexamples to conjectures in Cheeger and Colding [J. Differential Geom. 46 (1997), pp. 406–480] and Kapovitch, Kell, and Ketterer [Math. Z. 301 (2022), pp. 3469–3502].","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We establish two surprising types of Weyl’s laws for some compact RCD ⁡ ( K , N ) \operatorname {RCD}(K, N) /Ricci limit spaces. The first type could have power growth of any order (bigger than one). The other one has an order corrected by logarithm similar to some fractals even though the space is 2-dimensional. Moreover the limits in both types can be written in terms of the singular sets of null capacities, instead of the regular sets. These are the first examples with such features for RCD ⁡ ( K , N ) \operatorname {RCD}(K,N) spaces. Our results depend crucially on analyzing and developing important properties of the examples constructed in Pan and Wei [Geom. Funct. Anal. 32 (2022), pp. 676–685], showing them isometric to the α \alpha -Grushin halfplanes. Of independent interest, this also allows us to provide counterexamples to conjectures in Cheeger and Colding [J. Differential Geom. 46 (1997), pp. 406–480] and Kapovitch, Kell, and Ketterer [Math. Z. 301 (2022), pp. 3469–3502].
奇异Weyl定律,里奇曲率有界以下
对于一些紧致RCD (K, N) \operatorname {RCD}(K, N) /Ricci极限空间,我们建立了两种令人惊讶的Weyl定律。第一种类型可以具有任意量级(大于1)的功率增长。另一种是通过对数来修正阶数类似于一些分形,尽管空间是二维的。此外,这两种类型的极限都可以用零容量的奇异集来表示,而不是正则集。这些是具有RCD (K,N) \operatorname {RCD}(K,N)空间的此类特征的第一个例子。我们的结果在很大程度上取决于对Pan和Wei [Geom]构建的例子的重要性质的分析和发展。功能。[a] . 32 (2022), pp. 676-685],显示它们与α \ α -Grushin半平面是等距的。独立的兴趣,这也允许我们提供反例,以Cheeger和Colding的猜想[J]。微分地球,46 (1997),pp. 406-480]和Kapovitch, Kell和Ketterer[数学。[j].科学与技术,2016,pp. 357 - 357。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信