{"title":"Fault tolerant matrix-matrix multiplication: correcting soft errors on-line","authors":"Panruo Wu, Chong Ding, Longxiang Chen, Feng Gao, T. Davies, Christer Karlsson, Zizhong Chen","doi":"10.1145/2133173.2133185","DOIUrl":null,"url":null,"abstract":"Soft errors are one-time events that corrupt the state of a computing system but not its overall functionality. Soft errors normally do not interrupt the execution of the affected program, but the affected computation results can not be trusted any more. A well known technique to correct soft errors in matrix-matrix multiplication is algorithm-based fault tolerance (ABFT). While ABFT achieves much better efficiency than triple modular redundancy (TMR) - a traditional general technique to correct soft errors, both ABFT and TMR detect errors off-line after the computation is finished. This paper extends the traditional ABFT technique from off-line to on-line so that soft errors in matrix-matrix multiplication can be detect in the middle of the computation during the program execution and higher efficiency can be achieved by correcting the corrupted computations in a timely manner. Experimental results demonstrate that the proposed technique can correct one error every ten seconds with negligible (i.e., less than 1%) performance penalty over the ATLAS dgemm().","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2133173.2133185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Soft errors are one-time events that corrupt the state of a computing system but not its overall functionality. Soft errors normally do not interrupt the execution of the affected program, but the affected computation results can not be trusted any more. A well known technique to correct soft errors in matrix-matrix multiplication is algorithm-based fault tolerance (ABFT). While ABFT achieves much better efficiency than triple modular redundancy (TMR) - a traditional general technique to correct soft errors, both ABFT and TMR detect errors off-line after the computation is finished. This paper extends the traditional ABFT technique from off-line to on-line so that soft errors in matrix-matrix multiplication can be detect in the middle of the computation during the program execution and higher efficiency can be achieved by correcting the corrupted computations in a timely manner. Experimental results demonstrate that the proposed technique can correct one error every ten seconds with negligible (i.e., less than 1%) performance penalty over the ATLAS dgemm().