Hidebehind

Jianwei Qian, Haohua Du, Jiahui Hou, Linlin Chen, Taeho Jung, Xiangyang Li
{"title":"Hidebehind","authors":"Jianwei Qian, Haohua Du, Jiahui Hou, Linlin Chen, Taeho Jung, Xiangyang Li","doi":"10.1145/3274783.3274855","DOIUrl":null,"url":null,"abstract":"We are speeding toward a not-too-distant future when we can perform human-computer interaction using solely our voice. Speech recognition is the key technology that powers voice input, and it is usually outsourced to the cloud for the best performance. However, user privacy is at risk because voiceprints are directly exposed to the cloud, which gives rise to security issues such as spoof attacks on speaker authentication systems. Additionally, it may cause privacy issues as well, for instance, the speech content could be abused for user profiling. To address this unexplored problem, we propose to add an intermediary between users and the cloud, named VoiceMask, to anonymize speech data before sending it to the cloud for speech recognition. It aims to mitigate the security and privacy risks by concealing voiceprints from the cloud. VoiceMask is built upon voice conversion but is much more than that; it is resistant to two de-anonymization attacks and satisfies differential privacy. It performs anonymization in resource-limited mobile devices while still maintaining the usability of the cloud-based voice input service. We implement VoiceMask on Android and present extensive experimental results. The evaluation substantiates the efficacy of VoiceMask, e.g., it is able to reduce the chance of a user's voice being identified from 50 people by a mean of 84%, while reducing voice input accuracy no more than 14.2%.","PeriodicalId":156307,"journal":{"name":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274783.3274855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

We are speeding toward a not-too-distant future when we can perform human-computer interaction using solely our voice. Speech recognition is the key technology that powers voice input, and it is usually outsourced to the cloud for the best performance. However, user privacy is at risk because voiceprints are directly exposed to the cloud, which gives rise to security issues such as spoof attacks on speaker authentication systems. Additionally, it may cause privacy issues as well, for instance, the speech content could be abused for user profiling. To address this unexplored problem, we propose to add an intermediary between users and the cloud, named VoiceMask, to anonymize speech data before sending it to the cloud for speech recognition. It aims to mitigate the security and privacy risks by concealing voiceprints from the cloud. VoiceMask is built upon voice conversion but is much more than that; it is resistant to two de-anonymization attacks and satisfies differential privacy. It performs anonymization in resource-limited mobile devices while still maintaining the usability of the cloud-based voice input service. We implement VoiceMask on Android and present extensive experimental results. The evaluation substantiates the efficacy of VoiceMask, e.g., it is able to reduce the chance of a user's voice being identified from 50 people by a mean of 84%, while reducing voice input accuracy no more than 14.2%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信