Robust anomaly detection in dynamic networks

Jing Wang, I. Paschalidis
{"title":"Robust anomaly detection in dynamic networks","authors":"Jing Wang, I. Paschalidis","doi":"10.1109/MED.2014.6961410","DOIUrl":null,"url":null,"abstract":"We propose two robust methods for anomaly detection in dynamic networks in which the properties of normal traffic evolve dynamically. We formulate the robust anomaly detection problem as a binary composite hypothesis testing problem and propose two methods: a model-free and a model-based one, leveraging techniques from the theory of large deviations. Both methods require a family of Probability Laws (PLs) that represent normal properties of traffic. We devise a two-step procedure to estimate this family of PLs. We compare the performance of our robust methods and their vanilla counterparts, which assume that normal traffic is stationary, on a network with a diurnal normal pattern and a common anomaly related to data exfiltration. Simulation results show that our robust methods perform better than their vanilla counterparts in dynamic networks.","PeriodicalId":127957,"journal":{"name":"22nd Mediterranean Conference on Control and Automation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2014.6961410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose two robust methods for anomaly detection in dynamic networks in which the properties of normal traffic evolve dynamically. We formulate the robust anomaly detection problem as a binary composite hypothesis testing problem and propose two methods: a model-free and a model-based one, leveraging techniques from the theory of large deviations. Both methods require a family of Probability Laws (PLs) that represent normal properties of traffic. We devise a two-step procedure to estimate this family of PLs. We compare the performance of our robust methods and their vanilla counterparts, which assume that normal traffic is stationary, on a network with a diurnal normal pattern and a common anomaly related to data exfiltration. Simulation results show that our robust methods perform better than their vanilla counterparts in dynamic networks.
动态网络中的鲁棒异常检测
在正常流量动态演化的动态网络中,提出了两种鲁棒的异常检测方法。我们将鲁棒异常检测问题表述为二元复合假设检验问题,并利用大偏差理论中的技术,提出了两种方法:无模型和基于模型的方法。这两种方法都需要一组表示交通正常属性的概率定律(PLs)。我们设计了一个两步程序来估计这类PLs。我们比较了我们的鲁棒方法和他们的香草对应方法的性能,后者假设正常流量是静止的,在一个具有日正常模式和与数据泄露相关的常见异常的网络上。仿真结果表明,我们的鲁棒方法在动态网络中的性能优于传统的鲁棒方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信