The Capacity of Photonic Erasure Channels with Detector Dead Times

Jaswanthi Mandalapu, K. Jagannathan
{"title":"The Capacity of Photonic Erasure Channels with Detector Dead Times","authors":"Jaswanthi Mandalapu, K. Jagannathan","doi":"10.1109/NCC52529.2021.9530152","DOIUrl":null,"url":null,"abstract":"We consider a photonic communication system wherein the photon detector suffers a random ‘dead time’ following each successful photon detection. If subsequent photon arrivals occur during the dead time, the information contained in the photons is assumed to be erased. We refer to such channels as photonic erasure channels and derive fundamental limits on the rate at which classical information can be transmitted on such channels. We assume photon arrivals according to a Poisson process, and consider two classes of detectors - paralyzable and nonparalyzable. We derive explicit expressions for the capacity of photonic erasure channels, for any general distribution of the dead times of the detector. For a photonic erasure channel with a nonparalyzable detector, we show that the capacity depends only on the expected dead time. On the other hand, with a paralyzable detector, the channel capacity depends on the dead time distribution through its Laplace transform.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a photonic communication system wherein the photon detector suffers a random ‘dead time’ following each successful photon detection. If subsequent photon arrivals occur during the dead time, the information contained in the photons is assumed to be erased. We refer to such channels as photonic erasure channels and derive fundamental limits on the rate at which classical information can be transmitted on such channels. We assume photon arrivals according to a Poisson process, and consider two classes of detectors - paralyzable and nonparalyzable. We derive explicit expressions for the capacity of photonic erasure channels, for any general distribution of the dead times of the detector. For a photonic erasure channel with a nonparalyzable detector, we show that the capacity depends only on the expected dead time. On the other hand, with a paralyzable detector, the channel capacity depends on the dead time distribution through its Laplace transform.
具有检测器死区时间的光子擦除通道容量
我们考虑了一个光子通信系统,其中光子探测器在每次成功探测光子后都会遭受随机的“死区时间”。如果随后的光子到达发生在死区时间,则假定光子中包含的信息被擦除。我们将这种信道称为光子擦除信道,并推导出经典信息在这种信道上传输速率的基本限制。我们假设光子根据泊松过程到达,并考虑两类探测器——可麻痹和不可麻痹。对于探测器死区时间的任何一般分布,我们导出了光子擦除通道容量的显式表达式。对于具有非瘫痪检测器的光子擦除通道,我们证明了其容量仅取决于预期死区时间。另一方面,对于可麻痹检测器,信道容量通过其拉普拉斯变换取决于死区时间分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信