SPERT: a VLIW/SIMD microprocessor for artificial neural network computations

K. Asanović, J. Beck, Brian E. D. Kingsbury, P. Kohn, N. Morgan, J. Wawrzynek
{"title":"SPERT: a VLIW/SIMD microprocessor for artificial neural network computations","authors":"K. Asanović, J. Beck, Brian E. D. Kingsbury, P. Kohn, N. Morgan, J. Wawrzynek","doi":"10.1109/ASAP.1992.218573","DOIUrl":null,"url":null,"abstract":"SPERT (synthetic perceptron testbed) is a fully programmable single chip microprocessor designed for efficient execution of artificial neural network algorithms. The first implementation is in a 1.2 mu m CMOS technology with a 50 MHz clock rate, and a prototype system is being designed to occupy a double SBus slot within a Sun Sparcstation. SPERT sustains over 300*10/sup 6/ connections per second during pattern classification, and around 100*10/sup 6/ connection updates per second while running the popular error backpropagation training algorithm. This represents a speedup of around two orders of magnitude over a Sparcstation-2 for algorithms of interest. An earlier system produced by the group, the Ring Array Processor (RAP), used commercial DSP chips. Compared with a RAP multiprocessor of similar performance, SPERT represents over an order of magnitude reduction in cost for problems where fixed-point arithmetic is satisfactory.<<ETX>>","PeriodicalId":265438,"journal":{"name":"[1992] Proceedings of the International Conference on Application Specific Array Processors","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the International Conference on Application Specific Array Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.1992.218573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

SPERT (synthetic perceptron testbed) is a fully programmable single chip microprocessor designed for efficient execution of artificial neural network algorithms. The first implementation is in a 1.2 mu m CMOS technology with a 50 MHz clock rate, and a prototype system is being designed to occupy a double SBus slot within a Sun Sparcstation. SPERT sustains over 300*10/sup 6/ connections per second during pattern classification, and around 100*10/sup 6/ connection updates per second while running the popular error backpropagation training algorithm. This represents a speedup of around two orders of magnitude over a Sparcstation-2 for algorithms of interest. An earlier system produced by the group, the Ring Array Processor (RAP), used commercial DSP chips. Compared with a RAP multiprocessor of similar performance, SPERT represents over an order of magnitude reduction in cost for problems where fixed-point arithmetic is satisfactory.<>
用于人工神经网络计算的VLIW/SIMD微处理器
SPERT (synthetic perceptron testbed)是一种完全可编程的单芯片微处理器,旨在有效地执行人工神经网络算法。第一个实现采用1.2 μ m CMOS技术,时钟频率为50 MHz,并且正在设计一个原型系统,用于占用Sun Sparcstation内的双SBus插槽。在模式分类期间,SPERT维持每秒超过300*10/sup 6/连接,在运行流行的误差反向传播训练算法时,每秒约100*10/sup 6/连接更新。对于感兴趣的算法,这表示比Sparcstation-2的速度提高了大约两个数量级。该集团生产的早期系统环形阵列处理器(RAP)使用商用DSP芯片。与具有类似性能的RAP多处理器相比,SPERT在满足不动点算法的情况下,将问题的成本降低了一个数量级以上
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信