Applied Hierarchical Linear Modeling for Cross-Cultural Comparison

T. Tran, Keith T Chan
{"title":"Applied Hierarchical Linear Modeling for Cross-Cultural Comparison","authors":"T. Tran, Keith T Chan","doi":"10.1093/oso/9780190888510.003.0007","DOIUrl":null,"url":null,"abstract":"We explain and demonstrate the application of Hierarchical Linear Modeling (HLM) in cross-cultural research. This method of analysis has not been sufficiently explored in social work research, and it can be a highly useful and appropriate statistical approach for making cross-cultural comparisons. We explain the rationale for HLM or multilevel modeling for cross-cultural data analysis, and we provide an example in which we use Stata to test for neighborhood effects across race groups using survey data. We provide Stata commands and examples of testing for invariance of effects across groups while controlling for heteroscedasticity due to neighborhood level effects. Finally, we included geomaps based on the data to provide visualization of neighborhood effects.","PeriodicalId":415847,"journal":{"name":"Applied Cross-Cultural Data Analysis for Social Work","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Cross-Cultural Data Analysis for Social Work","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780190888510.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explain and demonstrate the application of Hierarchical Linear Modeling (HLM) in cross-cultural research. This method of analysis has not been sufficiently explored in social work research, and it can be a highly useful and appropriate statistical approach for making cross-cultural comparisons. We explain the rationale for HLM or multilevel modeling for cross-cultural data analysis, and we provide an example in which we use Stata to test for neighborhood effects across race groups using survey data. We provide Stata commands and examples of testing for invariance of effects across groups while controlling for heteroscedasticity due to neighborhood level effects. Finally, we included geomaps based on the data to provide visualization of neighborhood effects.
应用层次线性模型进行跨文化比较
我们解释并演示了层次线性模型(HLM)在跨文化研究中的应用。这种分析方法在社会工作研究中还没有得到充分的探索,它可以作为一种非常有用和适当的统计方法进行跨文化比较。我们解释了用于跨文化数据分析的HLM或多层模型的基本原理,并提供了一个例子,其中我们使用Stata使用调查数据来测试跨种族群体的邻里效应。我们提供Stata命令和例子来测试跨组效应的不变性,同时控制由于邻域水平效应引起的异方差。最后,我们加入了基于数据的地形图,以提供邻域效应的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信