Treinamento distribuído de redes MLP para classificação de figuras geométricas

Lucca Gamballi, Daniel G. Tiglea, R. Candido, Magno T. M. Silva
{"title":"Treinamento distribuído de redes MLP para classificação de figuras geométricas","authors":"Lucca Gamballi, Daniel G. Tiglea, R. Candido, Magno T. M. Silva","doi":"10.14209/sbrt.2022.1570817366","DOIUrl":null,"url":null,"abstract":"— Multilayer perceptron neural networks are used to classify geometric figures using a distributed approach. Training data are divided among neural networks that communicate through a certain topology, in which each network does not have access to the training data of the others. Simulation results indicate that the performance achieved with distributed training and a suitable topology is similar to that observed with classical training. Thus, data privacy is guaranteed without loss of performance.","PeriodicalId":278050,"journal":{"name":"Anais do XL Simpósio Brasileiro de Telecomunicações e Processamento de Sinais","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XL Simpósio Brasileiro de Telecomunicações e Processamento de Sinais","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14209/sbrt.2022.1570817366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

— Multilayer perceptron neural networks are used to classify geometric figures using a distributed approach. Training data are divided among neural networks that communicate through a certain topology, in which each network does not have access to the training data of the others. Simulation results indicate that the performance achieved with distributed training and a suitable topology is similar to that observed with classical training. Thus, data privacy is guaranteed without loss of performance.
用于几何图形分类的MLP网络分布式训练
-多层感知器神经网络使用分布式方法对几何图形进行分类。训练数据被划分为通过一定拓扑进行通信的神经网络,其中每个网络都不能访问其他网络的训练数据。仿真结果表明,采用分布式训练和合适的拓扑结构可以获得与经典训练相似的性能。因此,在不损失性能的情况下保证数据隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信