Understanding and improving operating system effects in control flow prediction

ASPLOS X Pub Date : 2002-10-05 DOI:10.1145/605397.605405
Tao Li, L. John, A. Sivasubramaniam, N. Vijaykrishnan, J. Rubio
{"title":"Understanding and improving operating system effects in control flow prediction","authors":"Tao Li, L. John, A. Sivasubramaniam, N. Vijaykrishnan, J. Rubio","doi":"10.1145/605397.605405","DOIUrl":null,"url":null,"abstract":"Many modern applications result in a significant operating system (OS) component. The OS component has several implications including affecting the control flow transfer in the execution environment. This paper focuses on understanding the operating system effects on control flow transfer and prediction, and designing architectural support to alleviate the bottlenecks. We characterize the control flow transfer of several emerging applications on a commercial operating system. We find that the exception-driven, intermittent invocation of OS code and the user/OS branch history interference increase the misprediction in both user and kernel code.We propose two simple OS-aware control flow prediction techniques to alleviate the destructive impact of user/OS branch interference. The first one consists of capturing separate branch correlation information for user and kernel code. The second one involves using separate branch prediction tables for user and kernel code. We study the improvement contributed by the OS-aware prediction to various branch predictors ranging from simple Gshare to more elegant Agree, Multi-Hybrid and Bi-Mode predictors. On 32K entries predictors, incorporating OS-aware techniques yields up to 34%, 23%, 27% and 9% prediction accuracy improvement in Gshare, Multi-Hybrid, Agree and Bi-Mode predictors, resulting in up to 8% execution speedup.","PeriodicalId":377379,"journal":{"name":"ASPLOS X","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASPLOS X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/605397.605405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Many modern applications result in a significant operating system (OS) component. The OS component has several implications including affecting the control flow transfer in the execution environment. This paper focuses on understanding the operating system effects on control flow transfer and prediction, and designing architectural support to alleviate the bottlenecks. We characterize the control flow transfer of several emerging applications on a commercial operating system. We find that the exception-driven, intermittent invocation of OS code and the user/OS branch history interference increase the misprediction in both user and kernel code.We propose two simple OS-aware control flow prediction techniques to alleviate the destructive impact of user/OS branch interference. The first one consists of capturing separate branch correlation information for user and kernel code. The second one involves using separate branch prediction tables for user and kernel code. We study the improvement contributed by the OS-aware prediction to various branch predictors ranging from simple Gshare to more elegant Agree, Multi-Hybrid and Bi-Mode predictors. On 32K entries predictors, incorporating OS-aware techniques yields up to 34%, 23%, 27% and 9% prediction accuracy improvement in Gshare, Multi-Hybrid, Agree and Bi-Mode predictors, resulting in up to 8% execution speedup.
了解和改进操作系统在控制流预测中的作用
许多现代应用程序都包含重要的操作系统(OS)组件。操作系统组件有几个含义,包括影响执行环境中的控制流传输。本文的重点是了解操作系统对控制流传输和预测的影响,并设计架构支持来缓解瓶颈。我们描述了商业操作系统上几个新兴应用程序的控制流传输。我们发现异常驱动的操作系统代码的间歇调用和用户/操作系统分支历史的干扰增加了用户和内核代码的错误预测。我们提出了两种简单的操作系统感知控制流预测技术来减轻用户/操作系统分支干扰的破坏性影响。第一个包含为用户和内核代码捕获单独的分支相关信息。第二种方法涉及为用户代码和内核代码使用单独的分支预测表。我们研究了操作系统感知预测对各种分支预测的改进,从简单的Gshare到更优雅的Agree, Multi-Hybrid和Bi-Mode预测。在32K条目预测器上,结合操作系统感知技术,Gshare、Multi-Hybrid、Agree和Bi-Mode预测器的预测精度提高了34%、23%、27%和9%,执行速度提高了8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信