Genetic algorithms for feature selection and weighting, a review and study

Faten Hussein, R. Ward, N. Kharma
{"title":"Genetic algorithms for feature selection and weighting, a review and study","authors":"Faten Hussein, R. Ward, N. Kharma","doi":"10.1109/ICDAR.2001.953980","DOIUrl":null,"url":null,"abstract":"Our aim is: a) to present a comprehensive survey of previous attempts at using genetic algorithms (GA) for feature selection in pattern recognition applications, with a special focus on character recognition; and b) to report on work that uses GA to optimize the weights of the classification module of a character recognition system. The main purpose of feature selection is to reduce the number of features, by eliminating irrelevant and redundant features, while simultaneously maintaining or enhancing classification accuracy. Many search algorithms have been used for feature selection. Among those, GA have proven to be an effective computational method, especially in situations where the search space is uncharacterized (mathematically), not fully understood, or/and highly dimensional.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

Our aim is: a) to present a comprehensive survey of previous attempts at using genetic algorithms (GA) for feature selection in pattern recognition applications, with a special focus on character recognition; and b) to report on work that uses GA to optimize the weights of the classification module of a character recognition system. The main purpose of feature selection is to reduce the number of features, by eliminating irrelevant and redundant features, while simultaneously maintaining or enhancing classification accuracy. Many search algorithms have been used for feature selection. Among those, GA have proven to be an effective computational method, especially in situations where the search space is uncharacterized (mathematically), not fully understood, or/and highly dimensional.
遗传算法的特征选择与加权,综述与研究
我们的目标是:a)对以前在模式识别应用中使用遗传算法(GA)进行特征选择的尝试进行全面的调查,特别关注字符识别;b)报告使用遗传算法优化字符识别系统分类模块权重的工作。特征选择的主要目的是通过消除不相关和冗余的特征来减少特征的数量,同时保持或提高分类精度。许多搜索算法被用于特征选择。其中,遗传算法已被证明是一种有效的计算方法,特别是在搜索空间未被表征(数学上)、未被完全理解或/和高维的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信