Automatic Feature Selection for Operational Scenarios of Satellite Image Understanding using Measures of Mutual Information

Dragos Bratasanu, I. Nedelcu, M. Datcu
{"title":"Automatic Feature Selection for Operational Scenarios of Satellite Image Understanding using Measures of Mutual Information","authors":"Dragos Bratasanu, I. Nedelcu, M. Datcu","doi":"10.5220/0003143101090117","DOIUrl":null,"url":null,"abstract":"The Earth Observation processing tools operating in the recent scenario need to be tailored to the new products offered by the sub-meter spatial resolution imaging sensors. The new methods should provide the image analysts the essential automatic support to discover relevant information and identify significant elements in the image. We advocate an automatic technique to select the optimum number features used in classification, object detection and analysis of optical satellite images. Using measures of mutual information between the target classes and the available features, we investigate the criterions of maximum-relevance and maximum-relevance-minimumredundancy for automatic feature selection at very-low cost. Following a comprehensive set of experiments on multiple sensors, applications and classifiers, the results demonstrate the possible operational use of the method in future scenarios of humanmachine interactions in support of Earth Observation technologies.","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003143101090117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Earth Observation processing tools operating in the recent scenario need to be tailored to the new products offered by the sub-meter spatial resolution imaging sensors. The new methods should provide the image analysts the essential automatic support to discover relevant information and identify significant elements in the image. We advocate an automatic technique to select the optimum number features used in classification, object detection and analysis of optical satellite images. Using measures of mutual information between the target classes and the available features, we investigate the criterions of maximum-relevance and maximum-relevance-minimumredundancy for automatic feature selection at very-low cost. Following a comprehensive set of experiments on multiple sensors, applications and classifiers, the results demonstrate the possible operational use of the method in future scenarios of humanmachine interactions in support of Earth Observation technologies.
基于互信息测度的卫星图像理解操作场景自动特征选择
在最近情况下运行的地球观测处理工具需要根据亚米空间分辨率成像传感器提供的新产品进行调整。新方法应该为图像分析人员提供必要的自动支持,以发现图像中的相关信息和识别图像中的重要元素。在光学卫星图像的分类、目标检测和分析中,我们提倡一种自动选择最优数量特征的技术。利用目标类与可用特征之间的互信息度量,研究了低成本自动特征选择的最大相关准则和最大相关最小冗余准则。在对多个传感器、应用程序和分类器进行了一组全面的实验之后,结果证明了该方法在未来人机交互场景中支持地球观测技术的可能操作使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信