Boosted Band Ratio Feature Selection for Hyperspectral Image Classification

Zhouyu Fu, T. Caelli, Nianjun Liu, A. Robles-Kelly
{"title":"Boosted Band Ratio Feature Selection for Hyperspectral Image Classification","authors":"Zhouyu Fu, T. Caelli, Nianjun Liu, A. Robles-Kelly","doi":"10.1109/ICPR.2006.334","DOIUrl":null,"url":null,"abstract":"Band ratios have many useful applications in hyperspectral image analysis. While optimal ratios have been chosen empirically in previous research, we propose a principled algorithm for the automatic selection of ratios directly from data. First, a robust method is used to estimate the Kullback-Leibler divergence (KLD) between different sample distributions and evaluate the optimality of individual ratio features. Then, the boosting framework is adopted to select multiple ratio features iteratively. Multiclass classification is handled by using a pairwise classification framework. The algorithm can also be applied to the selection of discriminant bands. Experimental results on both simple material identification and complex land cover classification demonstrate the potential of this ratio selection algorithm","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Band ratios have many useful applications in hyperspectral image analysis. While optimal ratios have been chosen empirically in previous research, we propose a principled algorithm for the automatic selection of ratios directly from data. First, a robust method is used to estimate the Kullback-Leibler divergence (KLD) between different sample distributions and evaluate the optimality of individual ratio features. Then, the boosting framework is adopted to select multiple ratio features iteratively. Multiclass classification is handled by using a pairwise classification framework. The algorithm can also be applied to the selection of discriminant bands. Experimental results on both simple material identification and complex land cover classification demonstrate the potential of this ratio selection algorithm
用于高光谱图像分类的增强带比特征选择
波段比在高光谱图像分析中有许多有用的应用。虽然在以前的研究中已经经验地选择了最优比率,但我们提出了一种直接从数据中自动选择比率的原则性算法。首先,采用鲁棒方法估计不同样本分布之间的Kullback-Leibler散度(KLD),并评估单个比率特征的最优性。然后,采用提升框架迭代选择多个比值特征;多类分类通过使用两两分类框架来处理。该算法也可用于判别波段的选择。在简单的材料识别和复杂的土地覆盖分类上的实验结果都证明了该比例选择算法的潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信