{"title":"CAnDL: a domain specific language for compiler analysis","authors":"Philip Ginsbach, L. Crawford, M. O’Boyle","doi":"10.1145/3178372.3179515","DOIUrl":null,"url":null,"abstract":"Optimizing compilers require sophisticated program analysis and transformations to exploit modern hardware. Implementing the appropriate analysis for a compiler optimization is a time consuming activity. For example, in LLVM, tens of thousands of lines of code are required to detect appropriate places to apply peephole optimizations. It is a barrier to the rapid prototyping and evaluation of new optimizations. In this paper we present the Compiler Analysis Description Language (CAnDL), a domain specific language for compiler analysis. CAnDL is a constraint based language that operates over LLVM's intermediate representation. The compiler developer writes a CAnDL program, which is then compiled by the CAnDL compiler into a C++ LLVM pass. It provides a uniform manner in which to describe compiler analysis and can be applied to a range of compiler analysis problems, reducing code length and complexity. We implemented and evaluated CAnDL on a number of real world use cases: eliminating redundant operations; graphics code optimization; identifying static control flow regions. In all cases were we able to express the analysis more briefly than competing approaches.","PeriodicalId":117615,"journal":{"name":"Proceedings of the 27th International Conference on Compiler Construction","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Compiler Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178372.3179515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Optimizing compilers require sophisticated program analysis and transformations to exploit modern hardware. Implementing the appropriate analysis for a compiler optimization is a time consuming activity. For example, in LLVM, tens of thousands of lines of code are required to detect appropriate places to apply peephole optimizations. It is a barrier to the rapid prototyping and evaluation of new optimizations. In this paper we present the Compiler Analysis Description Language (CAnDL), a domain specific language for compiler analysis. CAnDL is a constraint based language that operates over LLVM's intermediate representation. The compiler developer writes a CAnDL program, which is then compiled by the CAnDL compiler into a C++ LLVM pass. It provides a uniform manner in which to describe compiler analysis and can be applied to a range of compiler analysis problems, reducing code length and complexity. We implemented and evaluated CAnDL on a number of real world use cases: eliminating redundant operations; graphics code optimization; identifying static control flow regions. In all cases were we able to express the analysis more briefly than competing approaches.