Potential and Opportunity of Co-Firing Power Plant in Indonesia Through Torrefaction of Empty Fruit Bunch (EFB) - A Review

A. Irawan
{"title":"Potential and Opportunity of Co-Firing Power Plant in Indonesia Through Torrefaction of Empty Fruit Bunch (EFB) - A Review","authors":"A. Irawan","doi":"10.48181/WCEJ.V5I1.12139","DOIUrl":null,"url":null,"abstract":"Electricity was an important requirement for various activities. Currently, the level of electricity consumption in Indonesia was around 1000 kWh/capita/year and is expected to continue to increase towards developed countries with a minimum electricity consumption level of 3000 kWh/capita/year.  Along with the increasing demand for electricity, many new power plants were being built in Indonesia using coal as fuel. Coal was a non-renewable fuel so the CO 2 gas produced has an impact on global warming. Co-Firing was a technology for combining fuel of biomass and coal in order to reduce the use of coal. The difference in the quality of biomass and coal was an obstacle to getting a stable combustion performance so it is necessary to improve the quality of biomass. The torrefaction technology can be implemented to improve the quality of biomass in Indonesia so it can be used as fuel for a co-firing power plant. One of the most potential biomass was empty fruit bunch (EFB) from palm oil processing with a potential of around 48 million tons per year or equivalent to 30 GW.  Every Oil palm mills plant that process 25 ton/hour of fresh oil palm fruit bunches can produce EFB around  5.25 ton/hour. With so many palm oil plants, torrefaction technology can be used to store EFB torrefied which can change the properties of biomass from hydrophilic to hydrophobic. The government's role to support the use of biomass, including EFB, is very much needed in increasing cooperation between palm oil mills and power plants.","PeriodicalId":313477,"journal":{"name":"World Chemical Engineering Journal","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Chemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48181/WCEJ.V5I1.12139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Electricity was an important requirement for various activities. Currently, the level of electricity consumption in Indonesia was around 1000 kWh/capita/year and is expected to continue to increase towards developed countries with a minimum electricity consumption level of 3000 kWh/capita/year.  Along with the increasing demand for electricity, many new power plants were being built in Indonesia using coal as fuel. Coal was a non-renewable fuel so the CO 2 gas produced has an impact on global warming. Co-Firing was a technology for combining fuel of biomass and coal in order to reduce the use of coal. The difference in the quality of biomass and coal was an obstacle to getting a stable combustion performance so it is necessary to improve the quality of biomass. The torrefaction technology can be implemented to improve the quality of biomass in Indonesia so it can be used as fuel for a co-firing power plant. One of the most potential biomass was empty fruit bunch (EFB) from palm oil processing with a potential of around 48 million tons per year or equivalent to 30 GW.  Every Oil palm mills plant that process 25 ton/hour of fresh oil palm fruit bunches can produce EFB around  5.25 ton/hour. With so many palm oil plants, torrefaction technology can be used to store EFB torrefied which can change the properties of biomass from hydrophilic to hydrophobic. The government's role to support the use of biomass, including EFB, is very much needed in increasing cooperation between palm oil mills and power plants.
印尼空果束(EFB)焙烧共烧电厂的潜力与机遇综述
电是各种活动的重要需求。目前,印度尼西亚的用电量水平约为1000千瓦时/人均/年,预计将继续增加,向发达国家的最低用电量水平为3000千瓦时/人均/年。随着对电力需求的增加,印度尼西亚正在建造许多使用煤炭作为燃料的新发电厂。煤炭是一种不可再生的燃料,因此产生的二氧化碳气体对全球变暖有影响。共烧是一种将生物质燃料与煤相结合以减少煤的使用的技术。生物质与煤的质量差异是获得稳定燃烧性能的障碍,因此提高生物质的质量是必要的。在印度尼西亚,可以实施这种焙烧技术来提高生物质的质量,使其可以用作共烧发电厂的燃料。最有潜力的生物质之一是棕榈油加工产生的空果束(EFB),每年的潜力约为4800万吨,相当于30吉瓦。每个油棕加工厂每小时加工25吨新鲜油棕果串,可生产约5.25吨/小时的EFB。棕榈油植物众多,烘烤技术可用于储存EFB烘烤物,使生物质的性质由亲水性变为疏水性。政府在支持包括EFB在内的生物质能使用方面的作用,对于加强棕榈油厂和发电厂之间的合作是非常必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信