Optimal Trading with Linear Costs

J. D. Lataillade, C. Deremble, M. Potters, J. Bouchaud
{"title":"Optimal Trading with Linear Costs","authors":"J. D. Lataillade, C. Deremble, M. Potters, J. Bouchaud","doi":"10.21314/JOIS.2012.005","DOIUrl":null,"url":null,"abstract":"We consider the problem of the optimal trading strategy in the presence of linear costs, and with a strict cap on the allowed position in the market. Using Bellman's backward recursion method, we show that the optimal strategy is to switch between the maximum allowed long position and the maximum allowed short position, whenever the predictor exceeds a threshold value, for which we establish an exact equation. This equation can be solved explicitely in the case of a discrete Ornstein-Uhlenbeck predictor. We discuss in detail the dependence of this threshold value on the transaction costs. Finally, we establish a strong connection between our problem and the case of a quadratic risk penalty, where our threshold becomes the size of the optimal non-trading band.","PeriodicalId":286833,"journal":{"name":"arXiv: Portfolio Management","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JOIS.2012.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We consider the problem of the optimal trading strategy in the presence of linear costs, and with a strict cap on the allowed position in the market. Using Bellman's backward recursion method, we show that the optimal strategy is to switch between the maximum allowed long position and the maximum allowed short position, whenever the predictor exceeds a threshold value, for which we establish an exact equation. This equation can be solved explicitely in the case of a discrete Ornstein-Uhlenbeck predictor. We discuss in detail the dependence of this threshold value on the transaction costs. Finally, we establish a strong connection between our problem and the case of a quadratic risk penalty, where our threshold becomes the size of the optimal non-trading band.
具有线性成本的最优交易
考虑存在线性成本时的最优交易策略问题,并对市场上允许的持仓有严格的上限。利用Bellman的反向递归方法,我们证明了最优策略是在最大允许多头头寸和最大允许空头头寸之间切换,当预测器超过一个阈值时,我们建立了一个精确方程。该方程可以在离散Ornstein-Uhlenbeck预测器的情况下显式求解。我们详细讨论了该阈值对交易成本的依赖性。最后,我们在我们的问题和二次风险惩罚的情况之间建立了紧密的联系,其中我们的阈值成为最优非交易波段的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信