Code-Aided Direction Finding in Turbo-Coded Square-QAM Transmissions

F. Bellili, Chaima Elguet, Souheib Ben Amor, S. Affes
{"title":"Code-Aided Direction Finding in Turbo-Coded Square-QAM Transmissions","authors":"F. Bellili, Chaima Elguet, Souheib Ben Amor, S. Affes","doi":"10.1109/ICUWB.2015.7324424","DOIUrl":null,"url":null,"abstract":"We investigate the problem of direction of arrival (DOA) estimation from turbo-coded square-QAM- modulated signals. We propose a new code-aided (CA) maximum likelihood (ML) direction finding technique that exploits the soft information obtained from the soft-input soft-output (SISO) decoder in the form of log-likelihood ratios (LLRs). Unlike standard estimation techniques, the proposed method improves the system performance by appropriately embedding the direction finding and receive beamforming tasks within the turbo iteration loop. In fact, the DOA estimates and the soft information are iteratively exchanged between the decoding and estimation blocks, respectively, according to the so called-turbo principle. Simulation results show that the new CA DOA estimation scheme lies between the two extreme direction finding schemes: completely non-data aided (NDA) and data-aided (DA) estimations. Moreover, the new CA DOA estimator reaches the corresponding CA Cramér-Rao lower bounds (CRLBs), over a wide range of practical SNRs thereby confirming its statistical efficiency in practice. The proposed scheme can be applied to systems, as well, when they are decoded with the turbo principle.","PeriodicalId":339208,"journal":{"name":"2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUWB.2015.7324424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the problem of direction of arrival (DOA) estimation from turbo-coded square-QAM- modulated signals. We propose a new code-aided (CA) maximum likelihood (ML) direction finding technique that exploits the soft information obtained from the soft-input soft-output (SISO) decoder in the form of log-likelihood ratios (LLRs). Unlike standard estimation techniques, the proposed method improves the system performance by appropriately embedding the direction finding and receive beamforming tasks within the turbo iteration loop. In fact, the DOA estimates and the soft information are iteratively exchanged between the decoding and estimation blocks, respectively, according to the so called-turbo principle. Simulation results show that the new CA DOA estimation scheme lies between the two extreme direction finding schemes: completely non-data aided (NDA) and data-aided (DA) estimations. Moreover, the new CA DOA estimator reaches the corresponding CA Cramér-Rao lower bounds (CRLBs), over a wide range of practical SNRs thereby confirming its statistical efficiency in practice. The proposed scheme can be applied to systems, as well, when they are decoded with the turbo principle.
涡轮编码方形qam传输中的码助测向
研究了涡轮编码方形qam调制信号的到达方向估计问题。我们提出了一种新的编码辅助(CA)最大似然(ML)测向技术,该技术利用从软输入软输出(SISO)解码器以对数似然比(LLRs)的形式获得的软信息。与标准估计技术不同,该方法通过在涡轮迭代环路中适当嵌入测向和接收波束形成任务来提高系统性能。实际上,根据所谓的turbo原理,DOA估计和软信息分别在解码块和估计块之间迭代交换。仿真结果表明,该方法介于完全非数据辅助(NDA)和数据辅助(DA)两种极端测向方案之间。此外,新的CA DOA估计器在较宽的实际信噪比范围内达到相应的CA cram r- rao下界(CRLBs),从而证实了其在实践中的统计效率。所提出的方案也可以应用于系统,当它们用涡轮原理解码时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信