Inpaint2Learn: A Self-Supervised Framework for Affordance Learning

Lingzhi Zhang, Weiyu Du, Shenghao Zhou, Jiancong Wang, Jianbo Shi
{"title":"Inpaint2Learn: A Self-Supervised Framework for Affordance Learning","authors":"Lingzhi Zhang, Weiyu Du, Shenghao Zhou, Jiancong Wang, Jianbo Shi","doi":"10.1109/WACV51458.2022.00383","DOIUrl":null,"url":null,"abstract":"Perceiving affordances –the opportunities of interaction in a scene, is a fundamental ability of humans. It is an equally important skill for AI agents and robots to better understand and interact with the world. However, labeling affordances in the environment is not a trivial task. To address this issue, we propose a task-agnostic framework, named Inpaint2Learn, that generates affordance labels in a fully automatic manner and opens the door for affordance learning in the wild. To demonstrate its effectiveness, we apply it to three different tasks: human affordance prediction, Location2Object and 6D object pose hallucination. Our experiments and user studies show that our models, trained with the Inpaint2Learn scaffold, are able to generate diverse and visually plausible results in all three scenarios.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Perceiving affordances –the opportunities of interaction in a scene, is a fundamental ability of humans. It is an equally important skill for AI agents and robots to better understand and interact with the world. However, labeling affordances in the environment is not a trivial task. To address this issue, we propose a task-agnostic framework, named Inpaint2Learn, that generates affordance labels in a fully automatic manner and opens the door for affordance learning in the wild. To demonstrate its effectiveness, we apply it to three different tasks: human affordance prediction, Location2Object and 6D object pose hallucination. Our experiments and user studies show that our models, trained with the Inpaint2Learn scaffold, are able to generate diverse and visually plausible results in all three scenarios.
Inpaint2Learn:一个功能学习的自我监督框架
感知能力——场景中交互的机会,是人类的一项基本能力。对于人工智能代理和机器人来说,更好地理解世界并与之互动是一项同样重要的技能。然而,在环境中标记可得性并不是一项简单的任务。为了解决这个问题,我们提出了一个名为Inpaint2Learn的任务不可知框架,它以全自动的方式生成可视性标签,为在自然环境中进行可视性学习打开了大门。为了证明其有效性,我们将其应用于三个不同的任务:人类功能预测、Location2Object和6D物体姿势幻觉。我们的实验和用户研究表明,使用Inpaint2Learn支架训练的模型能够在所有三种场景中生成多样化且视觉上可信的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信