{"title":"Fairness in routing and load balancing","authors":"J. Kleinberg, Y. Rabani, É. Tardos","doi":"10.1109/SFFCS.1999.814631","DOIUrl":null,"url":null,"abstract":"We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria interacts in a complex fashion with the optimization of network utilization and throughput; in this work, we undertake an investigation of this relationship through the framework of approximation algorithms. In this work we consider the problem of selecting paths for routing so as to provide a bandwidth allocation that is as fair as possible (in the max-min sense). We obtain the first approximation algorithms for this basic optimization problem, for single-source unsplittable routings in an arbitrary directed graph. Special cases of our model include several fundamental load balancing problems, endowing them with a natural fairness criterion to which our approach can be applied. Our results form an interesting counterpart to the work of Megiddo (1974), who considered max-min fairness for single-source fractional flow. The optimization problems in our setting become NP-complete, and require the development of new techniques for relating fractional relaxations of routing to the equilibrium constraints imposed by the fairness criterion.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"239","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 239
Abstract
We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria interacts in a complex fashion with the optimization of network utilization and throughput; in this work, we undertake an investigation of this relationship through the framework of approximation algorithms. In this work we consider the problem of selecting paths for routing so as to provide a bandwidth allocation that is as fair as possible (in the max-min sense). We obtain the first approximation algorithms for this basic optimization problem, for single-source unsplittable routings in an arbitrary directed graph. Special cases of our model include several fundamental load balancing problems, endowing them with a natural fairness criterion to which our approach can be applied. Our results form an interesting counterpart to the work of Megiddo (1974), who considered max-min fairness for single-source fractional flow. The optimization problems in our setting become NP-complete, and require the development of new techniques for relating fractional relaxations of routing to the equilibrium constraints imposed by the fairness criterion.