Applying Collaborative Filtering for Efficient Document Search

Seikyung Jung, Juntae Kim, Jonathan L. Herlocker
{"title":"Applying Collaborative Filtering for Efficient Document Search","authors":"Seikyung Jung, Juntae Kim, Jonathan L. Herlocker","doi":"10.1109/WI.2004.33","DOIUrl":null,"url":null,"abstract":"This paper presents the SERF (System for Electronic Recommendation Filtering) which is a collaborative filtering system that recommends context-sensitive, high-quality information sources for document search. Collaborative filtering systems remove the limitation of traditional content-based search by using individual's ratings to evaluate and recommend information sources. SERF uses collaborative filtering algorithms to predict the relevance and quality of each document with respect to each particular user and their specific information need. In our system, users specify their need in the form of a natural language query, and are provided with recommended documents based on ratings by other users with similar questions. Preliminary experiments show that the collaborative filtering recommendations increase the efficiency of the document search process. We also discuss some key challenges of designing a collaborative filtering system for document search.","PeriodicalId":229107,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'04)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2004.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents the SERF (System for Electronic Recommendation Filtering) which is a collaborative filtering system that recommends context-sensitive, high-quality information sources for document search. Collaborative filtering systems remove the limitation of traditional content-based search by using individual's ratings to evaluate and recommend information sources. SERF uses collaborative filtering algorithms to predict the relevance and quality of each document with respect to each particular user and their specific information need. In our system, users specify their need in the form of a natural language query, and are provided with recommended documents based on ratings by other users with similar questions. Preliminary experiments show that the collaborative filtering recommendations increase the efficiency of the document search process. We also discuss some key challenges of designing a collaborative filtering system for document search.
协同过滤在高效文档搜索中的应用
本文介绍了电子推荐过滤系统(SERF),它是一个协同过滤系统,为文档搜索推荐上下文敏感的高质量信息源。协同过滤系统通过使用个人评分来评估和推荐信息源,消除了传统基于内容的搜索的局限性。SERF使用协作过滤算法来预测每个文档相对于每个特定用户及其特定信息需求的相关性和质量。在我们的系统中,用户以自然语言查询的形式指定他们的需求,并根据具有类似问题的其他用户的评分提供推荐文档。初步实验表明,协同过滤推荐提高了文档搜索过程的效率。我们还讨论了设计用于文档搜索的协同过滤系统的一些关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信