Link between energy and computation in a physical model of Hopfield network

A. Kumar, V. Manmohan, M. Uday Shankar, M. Vishwanathan, V. Chakravarthy
{"title":"Link between energy and computation in a physical model of Hopfield network","authors":"A. Kumar, V. Manmohan, M. Uday Shankar, M. Vishwanathan, V. Chakravarthy","doi":"10.1109/ICONIP.2002.1202175","DOIUrl":null,"url":null,"abstract":"Linking information processing and energy flows via thermodynamics, Landauer (1961) proposed that irreversible computational processes have an inevitable \"thermodynamic cost\". We explore the existence of such a link in case of a neural network model of associative memory. Our simulations with an electronic implementation of the Hopfield neural network showed that enhanced performance of the network could only be obtained by increased dissipation of energy as heat. Contrarily, efforts to minimize energy dissipation led to impaired performance.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Linking information processing and energy flows via thermodynamics, Landauer (1961) proposed that irreversible computational processes have an inevitable "thermodynamic cost". We explore the existence of such a link in case of a neural network model of associative memory. Our simulations with an electronic implementation of the Hopfield neural network showed that enhanced performance of the network could only be obtained by increased dissipation of energy as heat. Contrarily, efforts to minimize energy dissipation led to impaired performance.
Hopfield网络物理模型中能量与计算之间的联系
Landauer(1961)通过热力学将信息处理和能量流动联系起来,提出不可逆的计算过程具有不可避免的“热力学成本”。我们在联想记忆的神经网络模型中探讨了这种联系的存在。我们对Hopfield神经网络电子实现的模拟表明,网络性能的增强只能通过增加能量作为热量的耗散来获得。相反,最小化能量耗散的努力会导致性能受损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信