Graphs on Surfaces

B. Mohar, C. Thomassen
{"title":"Graphs on Surfaces","authors":"B. Mohar, C. Thomassen","doi":"10.5860/choice.39-4635","DOIUrl":null,"url":null,"abstract":"Contents: Chapter 1. Introduction Basic Definition Trees and bipartite graphs Blocks ConnectivityChapter 2. Planar Graphs Planar graphs and the Jordan Curve Theorem The Jordan-Schonflies Theorem The Theorem of Kuratowski Characterizations of planar graphs 3-connected planar graphs Dual graphs Planarity algorithms Circle packing representations The Riemann Mapping Theorem The Jordan Curve Theorem and Kuratowski's Theorem in general topological spacesChapter 3. Surfaces Classification of surfacesRotation systemsEmbedding schemesThe genus of a graphClassification of noncompact surfacesChapter 4. Embeddings Combinatorially, Contractibility, of Cycles, and the Genus Problem Embeddings combinatoriallyCycles of embedded graphsThe 3-path-conditionThe genus of a graphThe maximum genus of a graphChapter 5. The Width of Embeddings Edge-width 2-flippings and uniqueness of LEW-embeddings Triangulations Minimal triangulations of a given edge-width Face-width Minimal embeddings of a given face-width Embeddings of planar graphs The genus of a graph with a given nonorientable embedding Face-width and surface minors Face-width and embedding flexibility Combinatorial properties of embedded graphs of large widthChapter 6. Embedding Extensions and Obstructions Forbidden subgraphs and forbidden minors Bridges Obstruction in a bridge 2-restricted embedding extensions The forbidden subgraphs for the projective plane The minimal forbidden subgraphs for general surfacesChapter 7. Tree-Width and the Excluded Minor Theorem Tree-width and the excluded grid theoremThe excluded minor theorem for any fixed surfaceChapter 8. Colorings of Graphs on Surfaces Planar graphs are 5-choosable The Four Color Theorem Color critical graphs and the Heawood formula Coloring in a few colors Graphs without short cycles Appendix A. The minmal forbidden subgraphs for the projective plane Appendix B. The unavoidable configurations in planar triangulations Bibliography Index","PeriodicalId":331733,"journal":{"name":"Johns Hopkins series in the mathematical sciences","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1252","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johns Hopkins series in the mathematical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5860/choice.39-4635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1252

Abstract

Contents: Chapter 1. Introduction Basic Definition Trees and bipartite graphs Blocks ConnectivityChapter 2. Planar Graphs Planar graphs and the Jordan Curve Theorem The Jordan-Schonflies Theorem The Theorem of Kuratowski Characterizations of planar graphs 3-connected planar graphs Dual graphs Planarity algorithms Circle packing representations The Riemann Mapping Theorem The Jordan Curve Theorem and Kuratowski's Theorem in general topological spacesChapter 3. Surfaces Classification of surfacesRotation systemsEmbedding schemesThe genus of a graphClassification of noncompact surfacesChapter 4. Embeddings Combinatorially, Contractibility, of Cycles, and the Genus Problem Embeddings combinatoriallyCycles of embedded graphsThe 3-path-conditionThe genus of a graphThe maximum genus of a graphChapter 5. The Width of Embeddings Edge-width 2-flippings and uniqueness of LEW-embeddings Triangulations Minimal triangulations of a given edge-width Face-width Minimal embeddings of a given face-width Embeddings of planar graphs The genus of a graph with a given nonorientable embedding Face-width and surface minors Face-width and embedding flexibility Combinatorial properties of embedded graphs of large widthChapter 6. Embedding Extensions and Obstructions Forbidden subgraphs and forbidden minors Bridges Obstruction in a bridge 2-restricted embedding extensions The forbidden subgraphs for the projective plane The minimal forbidden subgraphs for general surfacesChapter 7. Tree-Width and the Excluded Minor Theorem Tree-width and the excluded grid theoremThe excluded minor theorem for any fixed surfaceChapter 8. Colorings of Graphs on Surfaces Planar graphs are 5-choosable The Four Color Theorem Color critical graphs and the Heawood formula Coloring in a few colors Graphs without short cycles Appendix A. The minmal forbidden subgraphs for the projective plane Appendix B. The unavoidable configurations in planar triangulations Bibliography Index
曲面上的图
内容:第一章。基本定义树与二部图块连通性平面图平面图与约当曲线定理约当- schonflies定理库拉托夫斯基定理平面图的表征三连平面对偶图平面性算法圆填充表示黎曼映射定理一般拓扑空间中的约当曲线定理和库拉托夫斯基定理曲面的分类,旋转系统,层理方案,图的属,非紧曲面的分类,第四章。嵌入图的组合循环嵌入图的3-path-condition图的格,图的最大格第五章。嵌入的宽度宽度2-flippings LEW-embeddings三角剖分的唯一性给定宽度的最小三角剖表面宽度最小嵌入给定表面宽度的平面图形的属图的嵌入与给定nonorientable嵌入表面宽度和表面未成年人表面宽度和嵌入灵活性嵌入式图形的组合性质的大型widthChapter 6。嵌入扩展和阻碍禁止子图和禁止子图桥上的阻碍2-限制嵌入扩展投影平面的禁止子图一般曲面的最小禁止子图第七章。树宽和不排除小定理树宽和不排除网格定理任意固定曲面的不排除小定理第8章。平面上图的着色平面上的图是可5选的四色定理色临界图和Heawood公式几种颜色无短循环图的着色附录a .射影平面的最小禁止子图附录B.平面三角剖分中不可避免的配置
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信