Detection of slices including a ground-glass opacity nodule in CT volume data with semi-supervised learning

Dandan Yuan, Weiwei Du, Xiaojie Duan, Jianming Wang, Yanhe Ma, Hong Zhang
{"title":"Detection of slices including a ground-glass opacity nodule in CT volume data with semi-supervised learning","authors":"Dandan Yuan, Weiwei Du, Xiaojie Duan, Jianming Wang, Yanhe Ma, Hong Zhang","doi":"10.1109/SNPD.2017.8022778","DOIUrl":null,"url":null,"abstract":"The features of GGO nodules need to be obtained such as volume, mean, variance of Ground-Glass Opacity Nodules by boundaries of GGO nodules to judge malignant or benign of lung tumors. However, radiologists need to look for the slices including the GGO nodule in CT volume data. It is time-consuming. This paper proposes a semi-supervised learning method based on the label propagation. First, a GGO nodule was labeled in one slice. Secondly, similarities were found by comparing with the labeled GGO nodule using the values of pixels. Finally, the GGO nodule of the other slices was labeled by iteration. Experimental results showed that the approach of this paper can find slices including the GGO nodule. The approach is better than the nearest neighbor algorithm in performance.","PeriodicalId":186094,"journal":{"name":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2017.8022778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The features of GGO nodules need to be obtained such as volume, mean, variance of Ground-Glass Opacity Nodules by boundaries of GGO nodules to judge malignant or benign of lung tumors. However, radiologists need to look for the slices including the GGO nodule in CT volume data. It is time-consuming. This paper proposes a semi-supervised learning method based on the label propagation. First, a GGO nodule was labeled in one slice. Secondly, similarities were found by comparing with the labeled GGO nodule using the values of pixels. Finally, the GGO nodule of the other slices was labeled by iteration. Experimental results showed that the approach of this paper can find slices including the GGO nodule. The approach is better than the nearest neighbor algorithm in performance.
用半监督学习方法检测CT体积数据中包含毛玻璃不透明结节的切片
通过GGO结节的边界,了解GGO结节的体积、毛玻璃样混浊结节的均值、方差等特征,判断肺肿瘤的良恶性。然而,放射科医生需要在CT体积数据中寻找包含GGO结节的切片。这很耗时。提出了一种基于标签传播的半监督学习方法。首先,在一张切片上标记一个GGO结节。其次,利用像素值与标记的GGO结节进行比较,发现相似之处;最后对其他切片的GGO结节进行迭代标记。实验结果表明,该方法可以找到含有GGO结节的切片。该方法在性能上优于最近邻算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信