Energy-Aware Genetic Algorithms for Task Scheduling in Cloud Computing

Ying Chang-tian, Yu Jiong
{"title":"Energy-Aware Genetic Algorithms for Task Scheduling in Cloud Computing","authors":"Ying Chang-tian, Yu Jiong","doi":"10.1109/CHINAGRID.2012.15","DOIUrl":null,"url":null,"abstract":"For the cloud computing, task scheduling problems are of paramount importance. It becomes more challenging when takes into account energy consumption, traditional make span criteria and users QoS as objectives. This paper considers independent tasks scheduling in cloud computing as a bi-objective minimization problem with make span and energy consumption as the scheduling criteria. We use Dynamic Voltage Scaling (DVS) to minimize energy consumption and propose two algorithms. These two algorithms use the methods of unify and double fitness to define the fitness function and select individuals. They adopt the genetic algorithm to parallel find the reasonable scheduling scheme. The simulation results demonstrate the two algorithms can efficiently find the right compromise between make span and energy consumption.","PeriodicalId":371382,"journal":{"name":"2012 Seventh ChinaGrid Annual Conference","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Seventh ChinaGrid Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINAGRID.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

For the cloud computing, task scheduling problems are of paramount importance. It becomes more challenging when takes into account energy consumption, traditional make span criteria and users QoS as objectives. This paper considers independent tasks scheduling in cloud computing as a bi-objective minimization problem with make span and energy consumption as the scheduling criteria. We use Dynamic Voltage Scaling (DVS) to minimize energy consumption and propose two algorithms. These two algorithms use the methods of unify and double fitness to define the fitness function and select individuals. They adopt the genetic algorithm to parallel find the reasonable scheduling scheme. The simulation results demonstrate the two algorithms can efficiently find the right compromise between make span and energy consumption.
云计算中任务调度的能量感知遗传算法
对于云计算来说,任务调度问题至关重要。当以能量消耗、传统的make span标准和用户QoS为目标时,这就变得更加具有挑战性。本文将云计算中的独立任务调度看作是一个以时间跨度和能量消耗为调度准则的双目标最小化问题。我们使用动态电压缩放(DVS)来最小化能耗,并提出了两种算法。这两种算法采用统一适应度和双重适应度的方法来定义适应度函数和选择个体。采用遗传算法并行求解合理的调度方案。仿真结果表明,这两种算法都能有效地找到求解跨度和能耗之间的平衡点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信