{"title":"A Deep Hybrid Model for Weather Forecasting","authors":"Aditya Grover, Ashish Kapoor, E. Horvitz","doi":"10.1145/2783258.2783275","DOIUrl":null,"url":null,"abstract":"Weather forecasting is a canonical predictive challenge that has depended primarily on model-based methods. We explore new directions with forecasting weather as a data-intensive challenge that involves inferences across space and time. We study specifically the power of making predictions via a hybrid approach that combines discriminatively trained predictive models with a deep neural network that models the joint statistics of a set of weather-related variables. We show how the base model can be enhanced with spatial interpolation that uses learned long-range spatial dependencies. We also derive an efficient learning and inference procedure that allows for large scale optimization of the model parameters. We evaluate the methods with experiments on real-world meteorological data that highlight the promise of the approach.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"226","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 226
Abstract
Weather forecasting is a canonical predictive challenge that has depended primarily on model-based methods. We explore new directions with forecasting weather as a data-intensive challenge that involves inferences across space and time. We study specifically the power of making predictions via a hybrid approach that combines discriminatively trained predictive models with a deep neural network that models the joint statistics of a set of weather-related variables. We show how the base model can be enhanced with spatial interpolation that uses learned long-range spatial dependencies. We also derive an efficient learning and inference procedure that allows for large scale optimization of the model parameters. We evaluate the methods with experiments on real-world meteorological data that highlight the promise of the approach.