Practical Processing of Mobile Sensor Data for Continual Deep Learning Predictions

EMDL '17 Pub Date : 2017-05-17 DOI:10.1145/3089801.3089802
Kleomenis Katevas, Ilias Leontiadis, M. Pielot, J. Serrà
{"title":"Practical Processing of Mobile Sensor Data for Continual Deep Learning Predictions","authors":"Kleomenis Katevas, Ilias Leontiadis, M. Pielot, J. Serrà","doi":"10.1145/3089801.3089802","DOIUrl":null,"url":null,"abstract":"We present a practical approach for processing mobile sensor time series data for continual deep learning predictions. The approach comprises data cleaning, normalization, capping, time-based compression, and finally classification with a recurrent neural network. We demonstrate the effectiveness of the approach in a case study with 279 participants. On the basis of sparse sensor events, the network continually predicts whether the participants would attend to a notification within 10 minutes. Compared to a random baseline, the classifier achieves a 40% performance increase (AUC of 0.702) on a withheld test set. This approach allows to forgo resource-intensive, domain-specific, error-prone feature engineering, which may drastically increase the applicability of machine learning to mobile phone sensor data.","PeriodicalId":125567,"journal":{"name":"EMDL '17","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMDL '17","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3089801.3089802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We present a practical approach for processing mobile sensor time series data for continual deep learning predictions. The approach comprises data cleaning, normalization, capping, time-based compression, and finally classification with a recurrent neural network. We demonstrate the effectiveness of the approach in a case study with 279 participants. On the basis of sparse sensor events, the network continually predicts whether the participants would attend to a notification within 10 minutes. Compared to a random baseline, the classifier achieves a 40% performance increase (AUC of 0.702) on a withheld test set. This approach allows to forgo resource-intensive, domain-specific, error-prone feature engineering, which may drastically increase the applicability of machine learning to mobile phone sensor data.
移动传感器数据持续深度学习预测的实际处理
我们提出了一种实用的方法来处理移动传感器时间序列数据,以进行持续的深度学习预测。该方法包括数据清理、规范化、封顶、基于时间的压缩,最后使用循环神经网络进行分类。我们在279名参与者的案例研究中证明了该方法的有效性。在稀疏传感器事件的基础上,网络连续预测参与者是否会在10分钟内参加通知。与随机基线相比,分类器在保留的测试集上实现了40%的性能提升(AUC为0.702)。这种方法允许放弃资源密集型、特定领域、容易出错的特征工程,这可能会大大提高机器学习对手机传感器数据的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信