Local Antimagic Vertex Coloring of Wheel Graph and Helm Graph

F. F. Hadiputra, D. R. Silaban, T. Maryati
{"title":"Local Antimagic Vertex Coloring of Wheel Graph and Helm Graph","authors":"F. F. Hadiputra, D. R. Silaban, T. Maryati","doi":"10.5220/0010138400002775","DOIUrl":null,"url":null,"abstract":": Let 𝜒(cid:4666)𝐺(cid:4667) be a chromatic number of vertex coloring of a graph G. A bijection 𝑓: 𝐸 → (cid:4668)1,2,3, … ,|𝐸(cid:4666)𝐺(cid:4667)|(cid:4669) is called local antimagic vertex coloring if for any adjacent vertices do not share the same weight, where the weight of a vertex in 𝐺 is the sum of the label of edges incident to it. We denote the minimum number of distinct weight of vertices in 𝐺 so that the graph 𝐺 admits a local antimagic vertex coloring as 𝜒 (cid:3039)(cid:3028) (cid:4666)𝐺(cid:4667) . In this study, we established the missing value of 𝜒 (cid:3039)(cid:3028) for a case in wheel graph and 𝜒 (cid:3039)(cid:3028) for helm graph.","PeriodicalId":257157,"journal":{"name":"Proceedings of the 1st International MIPAnet Conference on Science and Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International MIPAnet Conference on Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010138400002775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Let 𝜒(cid:4666)𝐺(cid:4667) be a chromatic number of vertex coloring of a graph G. A bijection 𝑓: 𝐸 → (cid:4668)1,2,3, … ,|𝐸(cid:4666)𝐺(cid:4667)|(cid:4669) is called local antimagic vertex coloring if for any adjacent vertices do not share the same weight, where the weight of a vertex in 𝐺 is the sum of the label of edges incident to it. We denote the minimum number of distinct weight of vertices in 𝐺 so that the graph 𝐺 admits a local antimagic vertex coloring as 𝜒 (cid:3039)(cid:3028) (cid:4666)𝐺(cid:4667) . In this study, we established the missing value of 𝜒 (cid:3039)(cid:3028) for a case in wheel graph and 𝜒 (cid:3039)(cid:3028) for helm graph.
车轮图和舵机图的局部反幻顶点着色
:设 (cid:4666)𝐺(cid:4667)是图g顶点着色的一个色数。如果任意相邻顶点的权值不相同,则称为 (cid:4668)𝐺(cid:4667)|(cid:4669)的双射𝑓:→(cid:4668)1,2,3,…,如果任意相邻顶点的权值不相同,则称为局部反奇异顶点着色,其中𝐺中一个顶点的权值是与它相关的边的标号之和。我们表示𝐺中不同权值的最小个数,使得图𝐺允许一个局部的反奇异顶点着色为: (cid:3039)(cid:3028) (cid:4666)𝐺(cid:4667)。在本研究中,我们建立了车轮图中病例的缺失值(cid:3039)(cid:3028)和舵图中的缺失值(cid:3039)(cid:3028)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信