Efficient and High-Performance Sparse Matrix-Vector Multiplication on a Many-Core Array

Peiyao Shi, Aaron Stillmaker, B. Baas
{"title":"Efficient and High-Performance Sparse Matrix-Vector Multiplication on a Many-Core Array","authors":"Peiyao Shi, Aaron Stillmaker, B. Baas","doi":"10.1109/MCSoC57363.2022.00038","DOIUrl":null,"url":null,"abstract":"Sparse matrix-vector multiplication (SpMV) is a critical operation in scientific computing, engineering, and other applications. Eight functionally-equivalent SpMV implementations are created for a fine-grained many-core platform with independent shared memory modules. These implementations are compared with a general-purpose processor (Intel Core-i7 3720QM) and a graphics processing unit (GPU, NVIDIA Quadro 620) and results are scaled to 32 nm CMOS. The performance (throughput per chip area) for all three platforms is compared when operating on a set of seven unstructured sparse matrices of varying dimensions up to 3.6 billion elements. The many-core implementations show a $54\\times$ greater performance than the general-purpose processor, and $40\\times$ greater performance than the GPU.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse matrix-vector multiplication (SpMV) is a critical operation in scientific computing, engineering, and other applications. Eight functionally-equivalent SpMV implementations are created for a fine-grained many-core platform with independent shared memory modules. These implementations are compared with a general-purpose processor (Intel Core-i7 3720QM) and a graphics processing unit (GPU, NVIDIA Quadro 620) and results are scaled to 32 nm CMOS. The performance (throughput per chip area) for all three platforms is compared when operating on a set of seven unstructured sparse matrices of varying dimensions up to 3.6 billion elements. The many-core implementations show a $54\times$ greater performance than the general-purpose processor, and $40\times$ greater performance than the GPU.
基于多核阵列的高效、高性能稀疏矩阵向量乘法
稀疏矩阵向量乘法(SpMV)是科学计算、工程和其他应用中的一项关键运算。为具有独立共享内存模块的细粒度多核平台创建了8个功能等效的SpMV实现。这些实现与通用处理器(Intel Core-i7 3720QM)和图形处理单元(GPU, NVIDIA Quadro 620)进行了比较,结果缩放到32纳米CMOS。在操作一组7个不同维度的非结构化稀疏矩阵(最多36亿个元素)时,比较了所有三个平台的性能(每个芯片面积的吞吐量)。多核实现的性能比通用处理器高54倍,比GPU高40倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信