{"title":"Theoretical and experimental investigations of the controlled motion of the Roller Racer","authors":"K. Yefremov, T. B. Ivanova, A. Kilin, Y. Karavaev","doi":"10.1109/NIR50484.2020.9290220","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of the motion of the Roller Racer. We assume that the angle φ(t) between the platforms is a prescribed function of time and that the no-slip condition (nonholonomic constraint) and viscous friction force act at the points of contact of the wheels. In this case, all trajectories of the reduced system asymptotically tend to a periodic solution. In this paper it is shown analytically and experimentally that the chosen control defines periodic trajectories of the attachment point of the platforms on an average along a straight line. We determine the conditions for optimal control when the system moves along a straight line depending on the mass and geometric characteristics of the system and control parameters.","PeriodicalId":274976,"journal":{"name":"2020 International Conference Nonlinearity, Information and Robotics (NIR)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference Nonlinearity, Information and Robotics (NIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NIR50484.2020.9290220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we address the problem of the motion of the Roller Racer. We assume that the angle φ(t) between the platforms is a prescribed function of time and that the no-slip condition (nonholonomic constraint) and viscous friction force act at the points of contact of the wheels. In this case, all trajectories of the reduced system asymptotically tend to a periodic solution. In this paper it is shown analytically and experimentally that the chosen control defines periodic trajectories of the attachment point of the platforms on an average along a straight line. We determine the conditions for optimal control when the system moves along a straight line depending on the mass and geometric characteristics of the system and control parameters.