Uncertainty analysis of load model based on the sparse grid stochastic collocation method

Dong Han, T. Lin, Yilu Liu, Jin Ma, Guoqiang Zhang
{"title":"Uncertainty analysis of load model based on the sparse grid stochastic collocation method","authors":"Dong Han, T. Lin, Yilu Liu, Jin Ma, Guoqiang Zhang","doi":"10.1109/TDC.2014.6863148","DOIUrl":null,"url":null,"abstract":"There are a lot of uncertainties in load modeling and it parameter solutions, which is difficult to estimate uncertainty with traditional methods if the number of parameters is immense. This paper adopts the sparse grid stochastic collocation method for uncertainty analysis, and proposes a strategy available to calculate the multi-parameter uncertainty arising from load models. For multiple random inputs, sparse grid method can be regarded as an extension of Gaussian quadrature formulas in multi-dimensional cases. Based on the sparse grid stochastic collocation method, the collocation points can be selected among the Gaussian points of (l+1) order and lower than (l+1) order. Compared to other probabilistic analysis methods, it can not only maintain the integral precision but avoid the exponential rise of collocation points, and can greatly reduce simulation time. The case study on multiparameter uncertainty of the composite load model verifies the integral precision and the validity of the proposed method.","PeriodicalId":161074,"journal":{"name":"2014 IEEE PES T&D Conference and Exposition","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE PES T&D Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2014.6863148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are a lot of uncertainties in load modeling and it parameter solutions, which is difficult to estimate uncertainty with traditional methods if the number of parameters is immense. This paper adopts the sparse grid stochastic collocation method for uncertainty analysis, and proposes a strategy available to calculate the multi-parameter uncertainty arising from load models. For multiple random inputs, sparse grid method can be regarded as an extension of Gaussian quadrature formulas in multi-dimensional cases. Based on the sparse grid stochastic collocation method, the collocation points can be selected among the Gaussian points of (l+1) order and lower than (l+1) order. Compared to other probabilistic analysis methods, it can not only maintain the integral precision but avoid the exponential rise of collocation points, and can greatly reduce simulation time. The case study on multiparameter uncertainty of the composite load model verifies the integral precision and the validity of the proposed method.
基于稀疏网格随机配置法的负荷模型不确定性分析
负荷建模及其参数求解中存在许多不确定性,当参数数量巨大时,用传统方法难以估计不确定性。本文采用稀疏网格随机配置法进行不确定性分析,提出了一种计算负荷模型多参数不确定性的有效策略。对于多个随机输入,稀疏网格方法可以看作是高斯正交公式在多维情况下的扩展。基于稀疏网格随机搭配方法,可以在(l+1)阶和(l+1)阶以下的高斯点之间选择搭配点。与其他概率分析方法相比,该方法既保持了积分精度,又避免了配点的指数上升,大大缩短了仿真时间。以多参数不确定性复合载荷模型为例,验证了该方法的积分精度和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信