A N Alam, L Poston, S P Wilkinson, C G Golindano, R Williams
{"title":"A study in vitro of the sodium pump in fulminant hepatic failure.","authors":"A N Alam, L Poston, S P Wilkinson, C G Golindano, R Williams","doi":"10.1042/cs0550355","DOIUrl":null,"url":null,"abstract":"<p><p>1. The mechanism underlying the raised leucocyte sodium content in fulminant hepatic failure was studied by measurement of sodium fluxes, (Na+ + K+)-dependent adenosine triphosphatase activity, and leucocyte ATP content. 2. The rate constant for sodium efflux in the leucocytes was significantly reduced, and attributable to reduced activity of the enzyme (Na+ + K+)-ATPase. Leucocyte ATP content was not significantly different from that of control cells. 3. Incubation of cells from patients in the sera of normal subjects resulted in a reversal of these changes. Inhibition of the leucocyte sodium efflux rate constants and (Na+ +K+)-ATPase of normal cells was achieved by incubation in sera from patients. 4. We suggest that the raised sodium content of leucocytes in fulminant hepatic failure is attributable to a defective sodium pumping mechanism, possibly due to a circulating toxin.</p>","PeriodicalId":10356,"journal":{"name":"Clinical science and molecular medicine","volume":"55 4","pages":"355-63"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1042/cs0550355","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science and molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/cs0550355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
1. The mechanism underlying the raised leucocyte sodium content in fulminant hepatic failure was studied by measurement of sodium fluxes, (Na+ + K+)-dependent adenosine triphosphatase activity, and leucocyte ATP content. 2. The rate constant for sodium efflux in the leucocytes was significantly reduced, and attributable to reduced activity of the enzyme (Na+ + K+)-ATPase. Leucocyte ATP content was not significantly different from that of control cells. 3. Incubation of cells from patients in the sera of normal subjects resulted in a reversal of these changes. Inhibition of the leucocyte sodium efflux rate constants and (Na+ +K+)-ATPase of normal cells was achieved by incubation in sera from patients. 4. We suggest that the raised sodium content of leucocytes in fulminant hepatic failure is attributable to a defective sodium pumping mechanism, possibly due to a circulating toxin.