Differential evolution with automatic parameter configuration for solving the CEC2013 competition on Real-Parameter Optimization

S. Elsayed, R. Sarker, T. Ray
{"title":"Differential evolution with automatic parameter configuration for solving the CEC2013 competition on Real-Parameter Optimization","authors":"S. Elsayed, R. Sarker, T. Ray","doi":"10.1109/CEC.2013.6557795","DOIUrl":null,"url":null,"abstract":"The performance of Differential Evolution (DE) algorithms is known to be highly dependent on its search operators and control parameters. The selection of the parameter values is a tedious task. In this paper, a DE algorithm is proposed that configures the values of two parameters (amplification factor and crossover rate) automatically during its course of evolution. For this purpose, we considered a set of values as input for each of the parameters. The algorithm has been applied to solve a set of test problems introduced in IEEE CEC'2013 competition. The results of the test problems are compared with the known best solutions and the approach can be applied to other population based algorithms.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

The performance of Differential Evolution (DE) algorithms is known to be highly dependent on its search operators and control parameters. The selection of the parameter values is a tedious task. In this paper, a DE algorithm is proposed that configures the values of two parameters (amplification factor and crossover rate) automatically during its course of evolution. For this purpose, we considered a set of values as input for each of the parameters. The algorithm has been applied to solve a set of test problems introduced in IEEE CEC'2013 competition. The results of the test problems are compared with the known best solutions and the approach can be applied to other population based algorithms.
基于参数自动配置的差分进化求解CEC2013实参数优化竞赛
差分进化算法的性能高度依赖于其搜索算子和控制参数。选择参数值是一项繁琐的工作。本文提出了一种在进化过程中自动配置放大因子和交叉率两个参数值的DE算法。为此,我们考虑了一组值作为每个参数的输入。该算法已用于解决IEEE CEC 2013竞赛中引入的一组测试问题。将测试问题的结果与已知的最佳解进行比较,该方法可以应用于其他基于种群的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信