A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach

Francesco Gullo, Giovanni Ponti, Andrea Tagarelli, S. Greco
{"title":"A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach","authors":"Francesco Gullo, Giovanni Ponti, Andrea Tagarelli, S. Greco","doi":"10.1109/ICDM.2008.115","DOIUrl":null,"url":null,"abstract":"In recent years there has been a growing interest in clustering uncertain data. In contrast to traditional, \"sharp\" data representation models, uncertain data objects can be represented in terms of an uncertainty region over which a probability density function (pdf) is defined. In this context, the focus has been mainly on partitional and density-based approaches, whereas hierarchical clustering schemes have drawn less attention. We propose a centroid-linkage-based agglomerative hierarchical algorithm for clustering uncertain objects, named U-AHC. The cluster merging criterion is based on an information-theoretic measure to compute the distance between cluster prototypes. These prototypes are represented as mixture densities that summarize the pdfs of all the uncertain objects in the clusters. Experiments have shown that our method outperforms state-of-the-art clustering algorithms from an accuracy viewpoint while achieving reasonably good efficiency.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

In recent years there has been a growing interest in clustering uncertain data. In contrast to traditional, "sharp" data representation models, uncertain data objects can be represented in terms of an uncertainty region over which a probability density function (pdf) is defined. In this context, the focus has been mainly on partitional and density-based approaches, whereas hierarchical clustering schemes have drawn less attention. We propose a centroid-linkage-based agglomerative hierarchical algorithm for clustering uncertain objects, named U-AHC. The cluster merging criterion is based on an information-theoretic measure to compute the distance between cluster prototypes. These prototypes are represented as mixture densities that summarize the pdfs of all the uncertain objects in the clusters. Experiments have shown that our method outperforms state-of-the-art clustering algorithms from an accuracy viewpoint while achieving reasonably good efficiency.
一种基于信息论的不确定数据聚类层次算法
近年来,人们对聚类不确定数据越来越感兴趣。与传统的“尖锐”数据表示模型相比,不确定数据对象可以用定义概率密度函数(pdf)的不确定区域表示。在这种情况下,焦点主要集中在分区和基于密度的方法上,而分层聚类方案则较少受到关注。针对不确定目标的聚类问题,提出了一种基于质心连接的聚类分层算法U-AHC。聚类合并准则是基于一种计算聚类原型之间距离的信息论测度。这些原型被表示为混合密度,它总结了集群中所有不确定对象的pdf。实验表明,我们的方法从精度的角度优于最先进的聚类算法,同时获得相当好的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信