{"title":"From Mondrian to Modular Synth: Rendering NIME using Generative Adversarial Networks","authors":"Akito van Troyer, Rébecca Kleinberger","doi":"10.5281/zenodo.3672956","DOIUrl":null,"url":null,"abstract":"This paper explores the potential of image-to-image translation techniques in aiding the design of new hardware-based musical interfaces such as MIDI keyboard, grid-based controller, drum machine, and analog modular synthesizers. We collected an extensive image database of such interfaces and implemented image-to-image translation techniques using variants of Generative Adversarial Networks. The created models learn the mapping between input and output images using a training set of either paired or unpaired images. We qualitatively assess the visual outcomes based on three image-to-image translation models: reconstructing interfaces from edge maps, and collection style transfers based on two image sets: visuals of mosaic tile patterns and geometric abstract two-dimensional arts. This paper aims to demonstrate that synthesizing interface layouts based on image-to-image translation techniques can yield insights for researchers, musicians, music technology industrial designers, and the broader NIME community.","PeriodicalId":161317,"journal":{"name":"New Interfaces for Musical Expression","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Interfaces for Musical Expression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/zenodo.3672956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the potential of image-to-image translation techniques in aiding the design of new hardware-based musical interfaces such as MIDI keyboard, grid-based controller, drum machine, and analog modular synthesizers. We collected an extensive image database of such interfaces and implemented image-to-image translation techniques using variants of Generative Adversarial Networks. The created models learn the mapping between input and output images using a training set of either paired or unpaired images. We qualitatively assess the visual outcomes based on three image-to-image translation models: reconstructing interfaces from edge maps, and collection style transfers based on two image sets: visuals of mosaic tile patterns and geometric abstract two-dimensional arts. This paper aims to demonstrate that synthesizing interface layouts based on image-to-image translation techniques can yield insights for researchers, musicians, music technology industrial designers, and the broader NIME community.