Rafael Albuquerque, Arlington Rodrigues, Gildo Ferrucio, J. Aguiar, José Amarildo Filho, F. Madeiro
{"title":"Efficientnets Aplicadas à Esteganálise Em Imagens Digitais","authors":"Rafael Albuquerque, Arlington Rodrigues, Gildo Ferrucio, J. Aguiar, José Amarildo Filho, F. Madeiro","doi":"10.25286/repa.v7i2.2215","DOIUrl":null,"url":null,"abstract":"Diversas arquiteturas CNN com propósito específico para esteganálise foram desenvolvidas e atingiram o estado-da-arte superando os modelos anteriores que se baseavam nas etapas de extração de características e classificação. Novos conjuntos de dados de imagens foram propostos diferenciando-se dos anteriores pela quantidade de instâncias e a variação de características importantes como fator de qualidade e a carga útil (payload) de mensagem escondida em imagens. Além disso, novas arquiteturas de propósito geral têm se mostrado aplicáveis no âmbito da esteganálise e se beneficiam de transfer learning para acelerar o treinamento. Este trabalho aborda o treinamento da Steganalysis Residual Network (SRNET) com inicialização aleatória dos pesos e realiza a comparação de desempenho entre as arquiteturas de CNN Efficientnet e Efficientnetv2, com este último sendo 32% mais rápido que a EfficientnetB4, para cada época de treinamento. Por fim, também é apresentado um experimento envolvendo treinamentos sucessivos entre a imagem de cobertura e suas respectivas estego-imagens.","PeriodicalId":331078,"journal":{"name":"Revista de Engenharia e Pesquisa Aplicada","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia e Pesquisa Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25286/repa.v7i2.2215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diversas arquiteturas CNN com propósito específico para esteganálise foram desenvolvidas e atingiram o estado-da-arte superando os modelos anteriores que se baseavam nas etapas de extração de características e classificação. Novos conjuntos de dados de imagens foram propostos diferenciando-se dos anteriores pela quantidade de instâncias e a variação de características importantes como fator de qualidade e a carga útil (payload) de mensagem escondida em imagens. Além disso, novas arquiteturas de propósito geral têm se mostrado aplicáveis no âmbito da esteganálise e se beneficiam de transfer learning para acelerar o treinamento. Este trabalho aborda o treinamento da Steganalysis Residual Network (SRNET) com inicialização aleatória dos pesos e realiza a comparação de desempenho entre as arquiteturas de CNN Efficientnet e Efficientnetv2, com este último sendo 32% mais rápido que a EfficientnetB4, para cada época de treinamento. Por fim, também é apresentado um experimento envolvendo treinamentos sucessivos entre a imagem de cobertura e suas respectivas estego-imagens.