Efficientnets Aplicadas à Esteganálise Em Imagens Digitais

Rafael Albuquerque, Arlington Rodrigues, Gildo Ferrucio, J. Aguiar, José Amarildo Filho, F. Madeiro
{"title":"Efficientnets Aplicadas à Esteganálise Em Imagens Digitais","authors":"Rafael Albuquerque, Arlington Rodrigues, Gildo Ferrucio, J. Aguiar, José Amarildo Filho, F. Madeiro","doi":"10.25286/repa.v7i2.2215","DOIUrl":null,"url":null,"abstract":"Diversas arquiteturas CNN com propósito específico para esteganálise foram desenvolvidas e atingiram o estado-da-arte superando os modelos anteriores que se baseavam nas etapas de extração de características e classificação. Novos conjuntos de dados de imagens foram propostos diferenciando-se dos anteriores pela quantidade de instâncias e a variação de características importantes como fator de qualidade e a carga útil (payload) de mensagem escondida em imagens. Além disso, novas arquiteturas de propósito geral têm se mostrado aplicáveis no âmbito da esteganálise e se beneficiam de transfer learning para acelerar o treinamento. Este trabalho aborda o treinamento da Steganalysis Residual Network (SRNET) com inicialização aleatória dos pesos e realiza a comparação de desempenho entre as arquiteturas de CNN Efficientnet e Efficientnetv2, com este último sendo 32% mais rápido que a EfficientnetB4, para cada época de treinamento. Por fim, também é apresentado um experimento envolvendo treinamentos sucessivos entre a imagem de cobertura e suas respectivas estego-imagens.","PeriodicalId":331078,"journal":{"name":"Revista de Engenharia e Pesquisa Aplicada","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia e Pesquisa Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25286/repa.v7i2.2215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diversas arquiteturas CNN com propósito específico para esteganálise foram desenvolvidas e atingiram o estado-da-arte superando os modelos anteriores que se baseavam nas etapas de extração de características e classificação. Novos conjuntos de dados de imagens foram propostos diferenciando-se dos anteriores pela quantidade de instâncias e a variação de características importantes como fator de qualidade e a carga útil (payload) de mensagem escondida em imagens. Além disso, novas arquiteturas de propósito geral têm se mostrado aplicáveis no âmbito da esteganálise e se beneficiam de transfer learning para acelerar o treinamento. Este trabalho aborda o treinamento da Steganalysis Residual Network (SRNET) com inicialização aleatória dos pesos e realiza a comparação de desempenho entre as arquiteturas de CNN Efficientnet e Efficientnetv2, com este último sendo 32% mais rápido que a EfficientnetB4, para cada época de treinamento. Por fim, também é apresentado um experimento envolvendo treinamentos sucessivos entre a imagem de cobertura e suas respectivas estego-imagens.
高效网在数字图像隐写分析中的应用
开发了几种具有隐写分析特定目的的CNN体系结构,克服了以前基于特征提取和分类步骤的模型,达到了最先进的水平。提出了新的图像数据集,在实例数量、质量因子和隐藏在图像中的有效载荷等重要特征的变化方面与以前的数据集有所不同。本文研究了随机权重初始化的残差Steganalysis Network (SRNET)训练,并比较了CNN Efficientnet和Efficientnetv2架构的性能,后者在每个训练季的速度比EfficientnetB4快32%。最后,我们还提出了一个实验,涉及到覆盖图像和它们各自的静态图像之间的连续训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信