Time-Domain Speaker Extraction Network

Chenglin Xu, Wei Rao, Chng Eng Siong, Haizhou Li
{"title":"Time-Domain Speaker Extraction Network","authors":"Chenglin Xu, Wei Rao, Chng Eng Siong, Haizhou Li","doi":"10.1109/ASRU46091.2019.9004016","DOIUrl":null,"url":null,"abstract":"Speaker extraction is to extract a target speaker's voice from multi-talker speech. It simulates humans' cocktail party effect or the selective listening ability. The prior work mostly performs speaker extraction in frequency domain, then reconstructs the signal with some phase approximation. The inaccuracy of phase estimation is inherent to the frequency domain processing, that affects the quality of signal reconstruction. In this paper, we propose a time-domain speaker extraction network (TseNet) that doesn't decompose the speech signal into magnitude and phase spectrums, therefore, doesn't require phase estimation. The TseNet consists of a stack of dilated depthwise separable convolutional networks, that capture the long-range dependency of the speech signal with a manageable number of parameters. It is also conditioned on a reference voice from the target speaker, that is characterized by speaker i-vector, to perform the selective listening to the target speaker. Experiments show that the proposed TseNet achieves 16.3% and 7.0% relative improvements over the baseline in terms of signal-to-distortion ratio (SDR) and perceptual evaluation of speech quality (PESQ) under open evaluation condition.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9004016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Speaker extraction is to extract a target speaker's voice from multi-talker speech. It simulates humans' cocktail party effect or the selective listening ability. The prior work mostly performs speaker extraction in frequency domain, then reconstructs the signal with some phase approximation. The inaccuracy of phase estimation is inherent to the frequency domain processing, that affects the quality of signal reconstruction. In this paper, we propose a time-domain speaker extraction network (TseNet) that doesn't decompose the speech signal into magnitude and phase spectrums, therefore, doesn't require phase estimation. The TseNet consists of a stack of dilated depthwise separable convolutional networks, that capture the long-range dependency of the speech signal with a manageable number of parameters. It is also conditioned on a reference voice from the target speaker, that is characterized by speaker i-vector, to perform the selective listening to the target speaker. Experiments show that the proposed TseNet achieves 16.3% and 7.0% relative improvements over the baseline in terms of signal-to-distortion ratio (SDR) and perceptual evaluation of speech quality (PESQ) under open evaluation condition.
时域说话人提取网络
说话人提取是从多说话人的语音中提取目标说话人的声音。它模拟了人类的鸡尾酒会效应或选择性倾听能力。先前的工作主要是在频域提取说话人,然后用相位近似重建信号。相位估计的不准确性是频域处理所固有的,影响信号重建的质量。本文提出了一种时域说话人提取网络(TseNet),该网络不需要将语音信号分解为幅度谱和相位谱,因此不需要进行相位估计。TseNet由一堆扩展的深度可分离卷积网络组成,该网络通过可管理的参数数量捕获语音信号的远程依赖性。它还以目标说话人的参考语音为条件,以说话人i向量为特征,对目标说话人进行选择性收听。实验表明,在开放评价条件下,本文提出的TseNet在信失真比(SDR)和语音质量感知评价(PESQ)方面分别比基线实现了16.3%和7.0%的相对改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信